Could Fisher, Jeffreys and Neyman have agreed on testing?

James Berger

Ronald Fisher advocated testing using p-values; Harold Jeffreys proposed use of objective posterior probabilities of hypotheses; and Jerzy Neyman recommended testing with fixed error probabilities. Each was quite critical of the other approaches. Most troubling for statistics and science is that the three approaches can lead to quite different practical conclusions.

We focus on discussion of the conditional frequentist approach to testing, which is argued to provide the basis for a methodological unification of the approaches of Fisher, Jeffreys and Neyman. The idea is to follow Fisher, in using p-values to define the `strength of evidence' in data, and to follow his approach of conditioning on strength of evidence; then follow Neyman by computing Type I and Type II error probabilities, but do so conditional on the strength of evidence in the data. The resulting conditional frequentist error probabilities equal the objective posterior probabilities of the hypotheses advocated by Jeffreys.

PDF File (602 KB)