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Abstract

The theory of multiple imputation for missing data requires that imputations be made conditional

on the sampling design. However, most standard software packages for performing model-based multiple

imputation assume simple random samples, leading many practitioners not to account for complex sample

design features, such as stratification and clustering, in their imputations. Theory predicts that analyses

of such multiply-imputed data sets can yield biased estimates from the design-based perspective. In this

article, we illustrate through simulation that (i) the bias can be severe when the design features are

related to the survey variables of interest, and (ii) the bias can be reduced by controlling for the design

features in the imputation models. The simulations also illustrate that conditioning on irrelevant design

features in the imputation models can yield conservative inferences, provided that the models include

other relevant predictors. These results suggest a prescription for imputers: the safest course of action is

to include design variables in the specification of imputation models. Using real data, we demonstrate a

simple approach for incorporating complex design features that can be used with some of the standard

software packages for creating multiple imputations.
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1 Introduction

Typically in large surveys, less than 100% of the sampled units respond fully to the survey. Some units do

not respond at all, and others respond only to certain items. One approach to handle such nonresponse is

multiple imputation of missing data (Rubin, 1987). It has been used in, for example, the Fatality Analysis

Reporting System (Heitjan and Little, 1991), the Consumer Expenditures Survey (Raghunathan and Paulin,

1998), the National Health and Nutrition Examination Survey (Schafer et al., 1998), the Survey of Consumer

Finances (Kennickell, 1998) and the National Health Interview Survey (Schenker et al., 2005). Multiple

imputation also has been suggested to protect confidentiality of public-release data (Rubin, 1993; Little,

1993; Raghunathan et al., 2003; Reiter, 2003, 2004, 2005). See Rubin (1996) and Barnard and Meng (1999)

for a review of other applications.

Multiple imputation, in theory, conditions on the sampling design when deriving methods for obtaining

inferences from multiply-imputed datasets (Rubin, 1987). However, imputers seldom account for complex

sampling design features, such as stratification and clustering, when using available software packages to

construct imputation models. They instead use multivariate normal or general location models (e.g., the

software NORM written by Joe Schafer), or use sequential regression models (Raghunathan et al., 2001).

These methods can be modified to incorporate design features, but this is infrequently done.

This paper has two objectives. First, we illustrate the bias that can arise when imputers fail to account

for complex design features in imputation models. To do so, we simulate multiple imputation in two-stage,

stratified-cluster samples. The simulations indicate these biases can be severe, even when using design-based

estimators in multiply-imputed data sets with moderate amounts of missing data. Second, we suggest two

simple approaches to account for design features in imputation models. The first approach, which is relatively

easy to implement, includes dummy variables for stratum or cluster effects in the imputation models. The

second approach, which is computationally more complex than the first, uses hierarchical models where

(i) the effects of clustering are incorporated using random effects, and (ii) the effects of stratification are

incorporated using fixed effects. The simulations show that accounting for the design in these ways can
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reduce the bias. They also illustrate that controlling for design features that are unrelated to the survey

variables can result in inefficient, but conservative, inferences relative to those from models that do not

condition on such features, provided that the models include the predictors required to make the missing

at random assumption (Rubin, 1976) plausible. We demonstrate the first approach to incorporating the

design features by imputing missing data from the National Health and Nutrition Examination Survey using

a sequential regression approach.

2 Inferences from multiply-imputed data sets

To describe construction of and inferences from multiply-imputed data sets, we use the notation of Rubin

(1987). For a finite population of size N , let Ij = 1 if unit j is selected in the original survey, and Ij = 0

otherwise, where j = 1, 2, . . . , N . Let I = (I1, . . . , IN ). Let n be the size of the sample obtained using a

complex design. To simplify notation, assume only one variable in the survey is subject to nonresponse. Let

Rj = 1 if unit j responds to the original survey, and Rj = 0 otherwise. Let R = (R1, . . . , RN). The notation

can be extended to handle multivariate item nonresponse, but such complication is not necessary for our

purposes.

Let Y be the N × p matrix of survey data for all units in the population. Let Yinc = (Yobs, Ymis) be the

n × p matrix of survey data for units with Ij = 1; Yobs is the portion of Yinc that is observed, and Ymis is

the portion of Yinc that is missing due to nonresponse. Let Z be the N × d matrix of design variables for all

N units in the population, e.g, stratum or cluster indicators or size measures. We assume that such design

information is known at least approximately, for example from census records or the sampling frames.

Values for Ymis are usually constructed from draws from some approximation to the Bayesian posterior

predictive distribution of (Ymis|Z, Yobs, I, R). These draws are repeated independently l = 1, . . . , M times

to obtain M completed data sets, D(l) = (Z, Yobs, Y
(l)
mis, I, R).

From these multiply-imputed data sets, some user of the data seeks inferences about some estimand

Q = Q(Z, Y ). For example, Q could be a population mean or a population regression coefficient. In each
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imputed data set D(l), the analyst estimates Q with some estimator q and the variance of q with some

estimator u. We assume that the analyst specifies q and u by acting as if each D(l) was in fact collected data

from a random sample of (Z, Y ) based on the original sampling design I , i.e., q and u are complete-data

estimators.

For l = 1, . . . , M , let q(l) and u(l) be respectively the values of q and u in data set D(l). Under assumptions

described in Rubin (1987), the analyst can obtain valid inferences for scalar Q by combining the q(l) and

u(l). Specifically, the following quantities are needed for inferences:

q̄M =

M
∑

l=1

q(l)/M (1)

bM =

M
∑

l=1

(q(l) − q̄M )2/(M − 1) (2)

ūM =

M
∑

l=1

u(l)/M. (3)

The analyst then can use q̄M to estimate Q and TM = (1+ 1
M

)bM +ūM to estimate the variance of q̄M . When

n and M are large, inferences for scalar Q can be based on normal distributions, so that a (1−α)% confidence

interval for Q is q̄M ± z(α/2)
√

TM . For moderate M , inferences can be based on t-distributions with degrees

of freedom νM = (M − 1)(1 + r−1
M )2, where rM = (1 + M−1)bM/ūM , so that a (1 − α)% confidence interval

for Q is q̄M ± tνM
(α/2)

√
TM . Refinements of these basic combining rules have been proposed by several

authors, including Li et al. (1991a), Li et al. (1991b), Raghunathan and Siscovick (1996), and Barnard and

Rubin (1999).

3 Illustrative Simulations

In this section, we use simulations to illustrate the biases/inefficiencies associated with incorporating design

features in imputation models. We simulate three target populations of N = 100, 000 units that are stratified

and clustered within strata. In the first population, Y depends on both stratum and cluster effects. In the

second population, Y depends on strata but not on cluster effects. In the third population, Y is unrelated to
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the stratum and cluster indicators. The first population is used to demonstrate the importance of including

all relevant design variables, and the second and third populations are used to examine the effect of including

irrelevant design variables. The simulated populations are stylized to illustrate the importance of modeling

the survey design; hence, the magnitudes of biases/inefficiencies may not be generalizable to other settings.

Each population is divided into five equally-sized strata comprised of Nh = 200 clusters, for h = 1, . . . , 5.

Each cluster c in stratum h is comprised of Nhc units. In each stratum, ten clusters have Nhc = 300, twenty

clusters have Nhc = 200, sixty clusters have Nhc = 100, sixty clusters have Nhc = 75, and fifty clusters have

Nhc = 50. Cluster sizes are varied to magnify design effects when taking multi-stage cluster samples. For

each target population, there are two survey variables, X and Y . In all three populations, for simplicity

we generate each Xhcj , where j indexes a unit within stratum and cluster hc, from Xhcj ∼ N(0, 102). To

generate Y , we use different methods for each population, as shall be described in subsequent sections.

We randomly sample units from each population using multi-stage cluster sampling. First, we take a

simple random sample of n1 = 40 clusters from stratum 1, n2 = 20 clusters from stratum 2, n3 = 30 clusters

from stratum 3, n4 = 10 clusters from stratum 4, and n5 = 15 clusters from stratum 5. The cluster sample

sizes differ across strata to magnify design effects relative to equal sampling. We then take a simple random

sample of twenty units from each sampled cluster. Hence, there are 2300 units with Ihcj = 1.

The estimands of interest in each population are Q = Ȳ , the population mean of Y , and the coefficients

for the population regression of Y on X. The complete-data estimator of Ȳ is the usual, unbiased design-

based estimator, q = 1
100000

(

∑5
h=1

200
nh

∑

c∈h ŷhc

)

, where ŷhc = Nhcȳhc is the estimated total in cluster hc.

The complete-data estimator of the variance of q is,

u = 1
1000002

(

∑5
h=1 2002(1 − nh

200 )s2
h/nh +

∑5
h=1

200
nh

∑

c∈h N2
hc(1 − 20

Nhc

)s2
hc/20

)

, where s2
h is the sample vari-

ance of the ŷhc and s2
hc is the sample variance of Y within cluster hc. The estimators of the coefficients in the

regression of Y on X are the usual approximately unbiased, design-based estimators, which are computed us-

ing the “survey” routines (Lumley, 2004) in the software package R. These routines estimate variances using

Taylor series linearizations. These estimators are used for all multiply-imputed data sets in all simulations.

For each sample, we let X be fully observed, and let Y be missing for about 30% of the sampled units.
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Table 1: Imputation strategies

Label Imputation model for missing Yhcj

SRS N(β0 + β1Xhcj , σ
2)

FX N(β0h + β1hXhcj + ωhc, σ
2
h)

HM N(β0h + β1hXhcl + ωhc, σ
2
h), ωhc ∼ N(0, τ2)

Each unit’s binary response variable, Rhcj , is drawn from a Bernoulli distribution:

Pr(Rhcj = 1) = exp(−.847− .1Xhcj)/(1 + exp(−.847− .1Xhcj)) (4)

Here, Rhcj = 1 means that the unit’s value of Y is missing. Equation 4 implies that Ymis is missing at random

(Rubin, 1976). We can ignore the missing data mechanism provided that imputations for missing data are

conditional on X . We purposefully do not allow missingness to depend on stratum or cluster membership to

illustrate that bias can arise from failing to account for the survey design even when the ignorable missing

data mechanism does not depend on the sampling design. Of course, if the sampling design is related to

missingness, as it is in many real datasets, one must condition on the sampling design to make the missing

data mechanism ignorable.

We examine three strategies to impute Ymis that make different use of the design information. These

strategies are summarized in Table 1. The first strategy, labeled SRS, completely disregards the sampling

design. The second strategy, FX, incorporates the stratification and the clustering by using fixed effects for

each cluster within stratum. The third strategy, HM, uses normal random effects models that incorporate

the stratification and clustering. For SRS, one model is fit to the entire data set. For FX and HM, models

are fit separately in each stratum. All three strategies regress on X because it is part of the missing data

mechanism; not conditioning on X would violate ignorability and cause bias.

All imputations are draws from the appropriate Bayesian posterior predictive distributions. First, we

draw parameters of the imputation models from their posterior distributions given the components of the

observed data, (Z, X, Yobs, I, R), that are included in the models. Second, we draw values of the missing
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data from the distributions given in Table 1. Diffuse priors are used for all parameters. For strategy HM, we

draw values of the parameters using a Gibbs sampler (Gelfand and Smith, 1990). We run the sampler for a

burn-in period to get approximate convergence, then we use every tenth draw for imputations. Finally, we

use M = 5 independently drawn imputations in each data set for each strategy.

3.1 Simulation A: Illustration of disregarding relevant design features

In this simulation, we generate a population in which the distributions of Y differ across strata and clusters.

We call this “Population 1”. Specifically, for unit j in stratum h and cluster c, we construct the population

value of Yhcj from

Yhcj = 10Xhcj + β0h + ωhc + εhcj (5)

where β0h is a scalar constant for stratum h, the ωhc is a scalar constant for cluster hc, and εhcj is a random

error term drawn from N(0, 2002). The values of the stratum effects are β01 = 500, β02 = −250, β03 = 0,

β04 = 250, and β05 = −500. The values of the ωhc are obtained by drawing five sets of Nh = 200 values from

independent N(0, 702). The stratum and cluster effects are widely dispersed to magnify design effects relative

to simple random sampling, which in turn magnifies the effects of disregarding the design in imputations.

We then sample from this population using the stratified cluster sampling scheme outlined previously. We

create the missing data indicator R using Equation 4.

Table 2 shows the results of 1000 replications of the three imputation strategies outlined in Table 1. The

additional row labeled “Complete data” shows the results using the data for all sampled units, i.e., assuming

no units with Ihcj = 1 have Rhcj = 0. The column labeled “95% CI cov.” contains the percentage of the

1000 simulated confidence intervals that contain the population parameter. The column labeled “Pt. Est.”

contains the averages of the 1000 point estimates of Q. The column labeled ”Var” contains the variances

of the 1000 point estimates of Q. The column labeled “Est. Var” contains the averages across the 1000

replications of the estimated variances of the point estimates. The columns labeled “Var(Est.Var)” and
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Table 2: Performance of imputation procedures when the design features are related to the survey variable
of interest. The population mean equals 3.2 and the population regression coefficients equal 3.0 and 10.1.

Method 95% CI cov. Pt. Est. Var Est.Var Var(Est.Var) MSE(Est.Var)

Mean Y

Complete data 94.2 2.0 544.91 527.31 31626.19 31936.07
SRS 38.0 45.8 327.79 360.74 11927.97 13013.35
FX 94.8 2.4 554.09 579.92 37474.82 38141.70
HM 94.5 2.3 551.02 553.16 34056.39 34060.99

Intercept

Complete data 93.0 2.4 529.51 499.73 18543.13 19430.21
SRS 39.5 46.8 340.09 365.50 9351.15 9996.99
FX 94.5 2.8 539.19 551.68 21529.16 21685.33
HM 93.9 2.7 536.82 524.82 19256.24 19400.11

Slope

Complete data 93.3 10.1 1.24 1.15 0.14 0.15
SRS 64.8 7.6 2.10 2.20 0.55 0.56
FX 94.5 10.1 1.45 1.44 0.18 0.18
HM 95.7 10.1 1.53 1.65 0.29 0.30

“MSE(Est.Var)” give the variance and mean squared error of the 1000 estimated variances.

Imputations based on method SRS lead to severely biased estimates and very poor confidence interval

coverage in this population. These problems exist even though there is not much missing information

and despite the fact that we use design-unbiased estimators for inferences. Both FX and HM have point

estimates that approximately match the complete-data point estimates, and both have coverage rates that

approximately match the rates for the complete data inferences. FX and HM have similar profiles because

the fixed effect models and the hierarchical models produce similar estimates of the parameters in Equation

5.

When estimating the population mean, the variance associated with FX or HM is only slightly larger

than the variance associated with the complete-data estimator. This is because of the large cluster effects,

which makes the within-imputation variance a dominant factor relative to the between-imputation variance.

That is, the fraction of missing information due to missing data is relatively small when compared to the

effect of clustering.
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Table 3: Performance of imputation procedures when the population has stratum effects but no cluster
effects. The population mean equals 0.34 and the population regression coefficients equal 0.14 and 10.13.

Method 95% CI cov. Pt. Est Var Est.Var Var(Est.Var) MSE(Est.Var)

Mean Y

Complete data 93.6 0.37 468.97 461.88 29301.77 29352.04
SRS 31.1 42.90 259.46 303.46 10228.40 12164.74
FX 93.7 0.32 473.86 474.21 30408.95 30409.07
HM 93.4 0.34 476.03 465.53 29406.61 29516.85

Intercept

Complete data 93.0 0.72 451.46 432.74 14955.20 15305.73
SRS 31.5 43.10 275.22 311.36 8134.04 9440.57
FX 93.2 0.66 456.08 444.88 15539.21 15664.64
HM 92.3 0.68 457.48 436.25 14941.00 15391.75

Slope

Complete data 93.1 10.09 0.99 0.91 0.09 0.10
SRS 59.0 7.72 1.67 1.77 0.35 0.36
FX 93.4 10.10 1.03 0.98 0.10 0.10
HM 93.3 10.10 1.03 0.96 0.10 0.10

3.2 Simulation B: Illustration of including irrelevant predictors

Modeling the design features is essential when the features are related to the survey variables of interest.

How does modeling irrelevant design features affect inferences? In this section, we present the results of two

simulation studies that explore this question.

First, we generate “Population 2” in which the distribution of Y differs across strata but does not depend

on the clusters. To do so, we use the same generation method as in Equation 5, setting the ωhc equal to

zero. The εhcj are drawn from N(0, 1002). We sample from Population 2 and generate missing data using

the schemes outlined previously. The results for 1000 replications are displayed in Table 3.

SRS continues to have severe bias and poor confidence interval coverage because it ignores the stratifica-

tion. For FX and HM, the averages of their point estimates are within simulation error of the average of the

point estimates for the complete data. Additionally, their confidence interval coverage rates approximately

match the coverage rate for the complete-data intervals. This indicates that FX and HM are reasonable for

these populations, even though the irrelevant cluster features are included in their imputation models.

We next generate “Population 3” in which the distribution of Y is independent of the strata and cluster

membership indicators. Specifically, to generate Y , we subtract the β0h from the values of Y generated in

Population 2. We then sample from Population 3 using the stratified cluster sampling scheme and create
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Table 4: Performance of imputation procedures when the design variables are completely unrelated to the
survey variable of interest. The population mean equals 0.34 and the population regression coefficients equal
0.14 and 10.04.

Method 95% CI cov. Pt. Est. Var Est.Var Var(Est.Var) MSE(Est.Var)

Mean Y

Complete data 94.7 0.35 14.61 14.73 32.65 32.66
SRS 95.7 0.12 16.45 19.22 40.65 48.31
FX 97.8 0.40 19.64 28.29 97.66 172.38
HM 95.1 0.26 18.77 19.16 47.29 47.44

Intercept

Complete data 93.7 0.12 7.13 7.20 5.31 5.32
SRS 96.8 -0.1 8.97 11.72 13.59 21.10
FX 98.6 0.17 12.23 20.62 39.84 110.24
HM 96.2 0.03 10.45 11.61 15.09 16.45

Slope

Complete data 94.5 10.04 0.07 0.07 0.001 0.001
SRS 96.4 10.07 0.10 0.13 0.002 0.003
FX 96.4 10.04 0.12 0.15 0.003 0.004
HM 95.2 10.05 0.11 0.12 0.002 0.002

missing data using the methods outlined previously. The results for 1000 replications are displayed in Table

4.

SRS finally produces point estimates whose averages are within simulation error of the complete data

average point estimate. This is because the imputations in SRS reflect the population structure reasonably

well. This suggests that disregarding the design in imputation models may provide acceptable inferences when

the design variables are only weakly correlated with the survey outcomes. As in the previous simulations,

FX and HM continue to have average point estimates within simulation error of the complete-data average

point estimate. When comparing the three imputation strategies, we see that FX and HM are inefficient

relative to SRS. This is because the imputation models for FX and HM estimate parameters that equal

approximately zero in the population, whereas SRS sets them equal to zero. HM has smaller variance than

FX does, because the hierarchical imputation model smoothes the estimated cluster effects towards zero.

For FX, the percentage of confidence intervals that cover Q is larger than the percentages for the complete-

data intervals and HM intervals. This is because the estimated variance for FX tends to be larger than

its actual variance. This apparent upward bias in TM also exists for SRS, resulting in a larger coverage

percentage than those for the complete-data and HM.
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Table 5: Comparison of real data results when design features are included in imputation model and when
design features are ignored.

Pt. Est. Est. Var. 95% CI
Mean BPQ060

design 0.319 0.0001 (0.299, 0.339)
no design 0.319 0.0001 (0.296, 0.341)

Intercept: Logistic Regression
design 0.362 0.0029 (0.256, 0.467)
no design 0.352 0.0027 (0.251, 0.454)

Slope: Logistic Regression
design -0.409 0.0004 (-0.449, -0.369)
no design -0.407 0.0004 (-0.444, -0.371)

4 Real Data Example

We next examine the effect of accounting for stratification and clustering when imputing missing data in a

genuine dataset. The data are taken from the public use file for the 1999-2002 National Health and Nutrition

Examination Surveys. Individuals are grouped in 56 clusters divided among 28 strata. Many variables have

5% to 10% missing data.

We imputed missing data using two strategies: one ignoring design variables (like SRS) and one incor-

porating the design variables using fixed effects for cluster indicators (like FX). In the imputation model,

we included 27 dummy variables to represent 28 strata and one dummy variable within-each stratum to

represent the two clusters nested within each stratum. That is, a total of 55 dummy variables were included

as predictors. We used a stepwise variable selection procedure to identify statistically significant interactions

between these dummy variables and survey variables, and we included these interactions as predictors in the

imputation model as well. The values were imputed using the sequential regression approach implemented

in the software package IVEWARE (www.isr.umich.edu/src/smp/ive). We generate M = 10 data sets for

each strategy.

We consider three estimands. The first is the population percentage of people who have ever had their

blood cholesterol level checked (BPQ060). This variable has about 15% missing values. The second and

third are the population regression coefficients in a logistic regression of BPQ060 on family poverty income
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ratio (INDFMPIR), a continuous variable that has about 12% missing values. These estimands are estimated

using design-based methods computed with the “survey” routines in the software package R.

Table 5 displays the results for both imputation strategies. The two sets of estimates for all analyses

are very similar. In this case, incorporating the design variables into the imputation model hardly impacts

the results. This is due in part to the small fractions of missing information and the relative unimportance

of stratum and cluster effects. However, there is minimal penalty for including the design features in the

imputation model. In light of the results of the simulations in Section 3, we would incorporate the design

features in this imputation model.

5 Concluding Remarks

The simulation studies, though limited, suggest disregarding the sampling design in multiple imputation can

be a risky practice. When the design variables are related to the survey variables, as in our Simulation A,

failing to include the design variables can lead to severe bias. On the other hand, including irrelevant design

variables, as in our Simulation B and the NHANES example, leads at worst to inefficient and conservative

inferences when the imputation models are otherwise properly specified.

Including dummy variables for cluster effects greatly reduced the bias relative to disregarding the design

completely. However, blindly including dummy variables is not an automatic solution. When the regression

slopes or variances differ across clusters, using FX or HM may result in biased estimates, since important de-

sign features are disregarded. Imputers suspecting such relationships should include appropriate interactions

with the dummy variables for the design features, as we did in the NHANES example. In some surveys the

design may be so complicated that it is impractical to include dummy variables for every cluster. In these

cases, imputers can simplify the model for the design variables, for example collapsing cluster categories or

including proxy variables (e.g., cluster size) that are related to the outcome of interest.

The simulations suggest there can be payoffs to using hierarchical models for imputation of missing data

relative to using fixed effects models, particularly when cluster effects are similar. However, hierarchical
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models are more difficult to fit than fixed effect models. For example, it is daunting to fit hierarchical

models in complex designs when data are missing for several continuous and categorical variables. It may

be possible to fit sequential hierarchical models in a spirit similar to the sequential regression imputations

of Raghunathan et al. (2001). This is an area for future research. A further disadvantage of hierarchical

models is that they are easier to mis-specify than fixed effects models. For example, if the cluster effects

follow a non-normal distribution, the hierarchical normal model used in this paper could provide implausible

imputations.

To conclude, we believe in many cases the potential biases resulting from excluding important design

variables outweigh the potential inefficiencies from estimating small coefficients. Design features frequently

are related to survey variables, so that the safest imputation strategy is to include design features in the

imputation models. This reinforces the general advice provided by many on multiple imputation: include

all variables that are related to the missing data in imputation models to make the missing data mechanism

ignorable (e.g., Meng, 1994; Little and Raghunathan, 1997; Schafer, 1997; Collins et al., 2001).
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