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Many scientific and policy investigations require statisti-
cal analyses that “integrate” data stored in multiple,

distributed databases. For example, a regression analysis on
integrated state databases about factors influencing student
performance would be more insightful than individual
analyses, or complementary to them. Other contexts where
the same need arises range from homeland security to envi-
ronmental monitoring.

At the same time, the barriers to actually integrating the
databases are numerous. One is confidentiality: the data-
base holders—we term them “agencies”—almost always
wish to protect the identities of their data subjects. Another
is regulation: the agencies may be forbidden by law to share
their data, either with each other or with a trusted third
party. A third is scale: despite advances in networking tech-
nology, the only way to move a terabyte of data from point A
today to point B tomorrow is FedEx.

The good news is that for many analyses it is not neces-
sary to move the data. Instead, using techniques from com-
puter science known generically as secure multiparty com-
putation, the agencies can share summaries of the data
anonymously, but in a way that the analysis can be per-
formed in a statistically principled manner.

In this article we illustrate linear regression on “horizon-
tally partitioned data.” Only one concept is needed, that of
secure summation, which is shown in Figure 1. There are
other approaches to this problem for lower risk situations, as
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well as similar approaches to related problems, such as ver-
tically partitioned data. For example, NISS has developed
techniques for secure data integration, which build the inte-
grated database in such a way that no agency can determine
the source of any data elements other than its own, at least
under the assumption that the data values themselves do
not reveal the source of records.

The Problem.

We assume that there are K > 2 agencies, each with the
same numerical data on its own nj data subjects—p predic-
tors X j and a response y j, and that the agencies wish to fit
the usual linear model

to the “global” data

and   .

Figure 2 shows such horizontal partitioning for K=3 agen-
cies. Each X j is nj x p.

We embed the constant term of the regression in the
first predictor: for all j. To illustrate the subtleties
of analysis of distributed data, the alternative strategy of
centering the predictors and response at their means does
not work, at least not directly. The means in this case are
the global means, which are not available without another
round of secure computation.

Under the condition that , the least
squares estimator for is of course

This article shows how can be computed without inte-
grating the agencies’ databases.

Several assumptions about agency behavior are neces-
sary. First, the agencies agree to cooperate to perform the
regression, and none of them is specifically interested in
breaking the confidentiality of the others’ data. Second,
each reports accurately the results of computations on its
own data, and follows the agreed-on computational proto-
cols, such as secure summation, properly. And finally, there
is no collusion among agencies.

Secure Summation.

The simplest secure multiparty computation, and essen-
tially the only one needed for secure regression, is to sum
values vj held by the agencies. Let v denote the sum. The
method described below, which has appeared recently in
the puzzles of the radio shows Car Talk and NPR Weekend
Edition Sunday, lets agency j learn only the minimum pos-
sible about the other agencies’ values, namely, the sum

The secure summation protocol in Figure 1 is almost
more complicated to describe than to implement. Number
the agencies 1, …, K. Agency 1 generates a very large ran-
dom integer R, adds R to its value v1, and sends the sum to
Agency 2. Since R is random, Agency 2 learns effectively
nothing about v1. Agency 2 adds its value v2 to R+v1, sends
the result to agency 3, and so on. Finally, Agency 1 receives
R+v1+…+vK = R+v from agency K, subtracts R, and shares
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Figure 1:Values computed at each agency during secure com-
putation of a sum initiated by Agency 1. Here v1=29, v2=5,
v3=152 and v=187. All arithmetic is modulo m=1024.

Figure 2: Pictorial representation of the secure regression pro-
tocol. The dimensions of various matrices are shown.



the result v with the other agencies. Here is one place where
cooperation matters: Agency 1 is obliged to share v with the
other agencies.

Figure 1 contains an extra layer of protection. Suppose
that v is known to lie in the range [0, m), where m is a very
large number, say 2100, known to all the agencies. Then R
can be chosen randomly from {0,…, m-1}$ and all compu-
tations performed modulo m.

Here is a simple application: the agencies have income
data and wish to compute the global average income. Let nj

be the number of records in agency j’s database and Ij be the
sum of their incomes. The quantity to be computed is

, whose numerator can be computed using
secure summation on the Ij’s, and whose denominator can
be computed using secure summation on the nj’s.

Secure Regression 

To compute , it is necessary to compute XTX and XTy.
Because of the horizontal partitioning of the data,

Therefore, Agency j simply computes its own (Xj)TXj, which
has dimensions p x p, where p is the number of predictors,
and these are combined entrywise using secure summation.
This computation is illustrated with K=3 in Figure 2. Of
course, because of symmetry, only ( ) + p secure summa-
tions are needed. Similarly, XTy can be computed by secure,
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entrywise summation of the (Xj)Tyj.
Finally, each agency can calculate from the shared

values of XT X and XT y. Note that no agency learns any other
agency’s (Xj)TXj or (Xj)Tyj, but only the sum of these over all
the other agencies.

Example

We illustrate the secure regression protocol using the
“Boston housing data” (Harrison and Rubinfeld, 1978).
There are 506 data cases, representing towns around
Boston, which we partitioned among K=3 agencies. The
agencies might, for example, represent regional governmen-
tal authorities.

The database sizes are n1 = 172, n2 = 182 and n3 = 152.
The response y is median housing value, and three predic-
tors were selected: X1 = CRIME per capita, X2 =
IND[USTRIALIZATION], the proportion of nonretail
business acres, and X3 = DIST[ANCE], a weighted sum of
distances to five Boston employment centers.

Figure 3 shows the results of the computations per-
formed by the three agencies, of their respective (Xj)TXj and
(Xj)Tyj. The agencies then use the secure regression protocol
to produce the global values

XT X = (X1)T X1 + (X2)T X2 + (X3)T X3 =

506.00 1828.44 5635.21 1920.29
1828.44 43970.34 32479.10 3466.28
5635.21 32479.10 86525.63 16220.67
1920.29 3466.28 16220.67 9526.77

β̂
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Agency j n j (Xj)TX j (Xj)Ty j

172.00   49.03  1581.19  781.52   4057.90
49.03  40.42   556.29  180.95  909.24

1  172 
1581.19  556.29  23448.60  5631.35  32227.19
781.52  180.95  5631.35  4186.07  18996.12

182.00   94.47 1563.50  746.1  4691.10
94.47  160.90   1433.20   231.87  2299.13

2  182 
1563.50  1433.20  18970.98  5224.19  37949.83
746.12  231.87  5224.19  3882.02  19193.18

152.00   1684.95  2490.52 392.64   2652.60
1684.95  43769.02  30489.61  3053.46   22478.73

3  152 
2490.52  30489.61   44106.05  5365.14   41387.06
392.64  3053.46   5365.14  1458.68   7524.57
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Figure 3: Illustration of the secure regression protocol for the “Boston housing data”  Harrison and Rubinfeld (1978). As discussed
in the text, there are three agencies, each of which computes its local (Xj)TXj and (Xj)Ty j. These are combined entrywise using
secure summation to produce shared global values XTX andXTy, from which each agency calculates the global regression coeffi-
cients.
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and

XT y =  (X1)T y1 + (X2)T y2 + (X3)T y3 =

These global objects are shared among the three agencies,
each of which can then calculate the estimated values of the
regression coefficients.

Figure 4 contains these estimators, as well as, for com-
parison purposes, the estimators for the three agency-spe-
cific local regressions. The intercept is , the coeffi-
cient corresponding to the constant predictor X1. Each
agency j ends up knowing both—but only—the global coef-
ficients and its own local coefficients. To the extent that
these differ, it can infer some information about the other
agencies’ regressions collectively, but not individually. In this
example, Agency 2 can detect that its regression differs from
the global one, but is not able to determine that Agency 1 is
the primary cause for the difference.

Model Diagnostics

In the absence of model diagnostics, secure regression loses
much of its appeal, especially to statisticians. We describe
briefly two strategies for producing informative diagnostics.
The first is to use diagnostics that can be computed using
secure summation from corresponding local statistics. The
second uses “secure data integration” (Karr et al., 2004) to
share synthetic residuals (Reiter, 2003).

Among diagnostics computable by secure summation
are the coefficient of determination R2, the least squares
estimate

of the error variance , correlations between predictors
and residuals, and the matrix H = X(XT X)-1 XT, which can be
used to identify X-outliers.

For diagnosing some types of assumption violations, only
patterns in relationships among the residuals and predictors
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suggestive of model misspecification are needed, rather
than exact values of the residuals and predictors. Such diag-
nostics can be produced for the global database using
secure data integration protocols (Karr et al., 2004) to share
synthetic diagnostics proposed for remote access computer
servers (Gomatan et al., 2003).

The synthetic diagnostics are generated in three steps.
First, each agency simulates values of its predictors.
Second, using the global regression coefficients, each
agency simulates residuals associated with these synthetic
predictors in a way—and this is the hard part—that mim-
ics the relationships between the predictors and residuals
in its own data. Finally, the agencies share their synthetic
predictors and residuals using secure data integration.

Discussion

We have presented a framework for secure linear regres-
sion in a cooperative environment. A huge number of vari-
ations is possible. For example, in order to give the agen-
cies flexibility, it may be important to give them the option
of withdrawing from the computation when their per-
ceived risk becomes too great. To illustrate, agency j may
wish to withdraw if its sample size nj is too large relative
to the global sample size n. This is the classical p-rule in
the statistical disclosure limitation literature (Willenborg
and de Waal, 2001). But, n can be computed using secure
summation, so agencies may “opt out” according to what-
ever criteria they wish to employ. It is even possible, at
least under a scenario that the process does not proceed
if any of the agencies opts out, to allow the opting out
itself to be anonymous.
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Regression  CONST CRIME  IND  DIST

Global  35.505  -0.273  -0.730  -1.016

Agency 1  39.362  -8.792  -0.720  -1.462
Agency 2  35.611  2.587  -0.896  -0.849
Agency 3  34.028  -0.241  -0.708  -0.893

Figure 4: Estimated global and agency-specific regression coef-
ficients for the partitioned Boston housing data. The intercept
is CONSTβ̂
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