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Abstract

This article evaluates the use of the multiple imputation framework to protect the
confidentiality of respondents’ answers in sample surveys. The basic proposal (Rubin,
1993) is to simulate multiple copies of the population from which these respondents
have been selected and release a random sample from each of these synthetic popula-
tions. Users can analyze the synthetic sample data sets with standard complete-data
software for simple random samples, then obtain valid inferences by combining the
point and variance estimates using the methods in this article. Both parametric and
nonparametric approaches for simulating these synthetic databases are discussed and
evaluated. It is shown, using actual and simulated data sets in simple settings, that
statistical inferences from these simulated research databases and the actual data
sets are similar, at least for the class of analyses considered. Arguably, this class in
practice will be large enough to satisfy many users of public-use data. Users with
more detailed demands may have to apply for special access to the confidential data.

Keywords: Bayesian approach, Bayesian bootstrap, Combining rules, Confiden-
tiality protection, Sample survey, Synthetic data sets

1 Introduction

The recent explosion in users’ demands for microdata, especially when the data col-
lection is paid for with public funds, has increased concerns about confidentiality
protection. Such protection is often promised to potential survey respondents by
data-collecting agencies. To minimize the chances of disclosures of respondents’ data,
some agencies alter or limit the variables in the public-release data, or they restrict
users’ access to data. Several data enclaves have been established where persons



wishing to use the microdata must perform analyses in these locations, either phys-
ically using the computers at these locations or through remote access. The latter
option requires several passes through “checkpoints” to ensure that the output does
not contain any potential identifying information or raw microdata. Even these data
enclaves seldom provide unfettered access to data. Typically, a detailed proposal
has to be submitted that provides a list of variables, rationale for the analysis and,
in some instances, evidence of extramural funding for the proposed analysis. These
proposals are reviewed by an appropriate committee and, upon approval, access is
granted only for the requested variables. Requests for additional variables may need
new, albeit expedited, administrative processes.

These solutions limit the potential utility of publicly collected data. Such data,
when released to a broad spectrum of society, inform analyses that can have major
positive social, medical and economic implications. The core of the issue, therefore,
is how to achieve wider dissemination of data for analytical purposes and at the same
time avoid accidental or malicious disclosures of respondents’ data.

Our proposal, first described in Rubin (1993), is to release synthetic research
databases constructed using multiple imputation. The heart of the proposal is to
view all data from nonsampled units as missing data to be filled in by multiple
imputation. The proposal is related to, but differs from, some other research efforts
on masking data to preserve confidentiality (Cox (1980, 1994), Dalenius and Reiss
(1989), Fienberg, Steele and Makov (1996), Fienberg, Makov and Steele (1998)).
Valid analysis of masked data requires knowledge of the masking techniques used
and special purpose statistical software tuned to those masking techniques (Duncan
and Lambert (1989), Fienberg, Makov and Sanil (1997), Fuller (1993), Keller and
Bethlehem (1992), and Little (1993)). In contrast, our approach preserves the user’s
ability to obtain valid statistical inferences using standard statistical methods and
software. The approach is also related to the work of Kennickel (1999) and Abowd
and Woodcock (2001). These works both use multiple imputation to replace sensitive
values for the units originally sampled, which are then released instead.

Another advantage of this methodology is the potential for more efficient infer-
ences by capitalizing on auxiliary variables in the generation of the multiply-imputed
databases. For example, suppose that information from administrative sources is
available on some or all of the sampled and non-sampled units, and the variables
in the administrative sources are highly correlated with the variables in the survey.
These correlations can be exploited in the generation of imputations to yield more
efficient inferences. Such information is available when a large survey is used as a sam-
pling frame for another survey. For instance, the National Survey of Family Growth
and Medical Provider Expenditure Survey both use the National Health Interview
Survey as the sampling frame (Ezzati-Rice et al. (1999)). The linked files cannot be
released because that can significantly increase the chances of disclosures. However,
the linked files can be used to simulate research databases. Other cases involve auxil-
iary data not available to the public. For example, in Clogg et al. (1999), imputations



were created using a special double-coded data base, thereby increasing the precision
of the imputations.

A further advantage of our approach is the ability to simplify the users’ analyses
of the public-use data by releasing simulated simple random samples from the par-
ent population rather than complex multi-stage samples typically used in practice.
The breadth of software available to analyze simple random samples is substantially
greater than for complex surveys.

Despite these obvious advantages, there has been relatively little progress until
recently on the implemation of this proposal from a decade ago. There are several
possible reasons for this. First, when it was originally made, although met with
enthusiasm from some, it was met with disbelief by others: could we seriously propose
spending time analyzing completely "fake” data? The simple analogies with the
analysis of small surveys to learn about huge populations was not entirely convincing
to some, even though accurate. Second, a decade ago, the use of multiple imputation,
although supported in some quarters, had not yet been generally accepted as a method
to address the problem of missing data. Since that time, not only has multiple
imputation been much more broadly accepted and available in common software,
but the entire battery of simulation tools, including MCMC algorithms, has become
relatively common. A third reason for the dearth of work on the proposal may be
the complexity of the objects of its application: real world major surveys. Multiple
imputation has recently been successfully used in complex multi-stage surveys, as
pointed out repeatedly (e.g., Rubin 1987, 1996; Reiter and Raghunathan, 2002) and
illustrated in applications to the National Health and Nutritional Examination Survey
(Schafer et al. (1996)) and the National Health Interview Survey (Schenker et al.
(2002)).

This paper begins to address this sitution in simple, but not unrealistic, settings.
In Section 2, procedures for combining inferences from multiply imputed, synthetic
databases are provided. In Section 3, it is shown via simulation studies that infer-
ences based on multiply-imputed research databases using complete-data models can
be very similar to the corresponding inferences based on actual data sets. In the
simulations, both a parametric approach and a nonparametric approach using the
Bayesian bootstrap are used to create the synthetic data,. The basic idea in both
approaches is to draw several sets of values from the posterior predictive distribution
of the observations for the nonsampled units given the observations from the sampled
units. Both artificial and genuine data sets are used in the simulations. The artificial
data sets are generated under multivariate normal assumptions. The genuine data
set, is the 1994 Consumer Expenditure Survey.

Section 4 develops theory for inferences from synthetic samples. A cursory glance
may suggest that the standard multiple imputation combining formulas (the repeated
imputation rules, Rubin (1987)) are adequate. However, the correct Bayesian devel-
opment for combining inferences from synthetic samples leads to a different formula
for constructing variance estimates because of the extra sampling from the synthetic



populations to create synthetic samples, an issue first addressed by Raghunathan and
Rubin (2000). Section 5 provides theoretical results concerning validity of the com-
bining rules from the randomization perspective. Finally, Section 6 concludes with a
discussion and directions for future research.

2 Synthetic Data

2.1 Creation of Synthetic Samples

Let the actual microdata be a sample of size n from a finite population P = (X,Y)
of size N, with X = (X;,i =1,2,..., N) representing background (including design
and administrative records) variables available on all N units in the population and
Y = (Yi;i =1,2,..., N) representing survey variables of interest, observed only for
sampled units. Without loss of generality, let Y;,, = (Y;,i = 1,2,...,n) be the
observed portion of Y and Y. = (Y;,i = n+ 1,n+ 2,...,N) be the unobserved
portion of Y corresponding to nonsampled units. The observed microdata is D =
{X=(X;,1=1,2,...,N), Y. = (Yi,i = 1,2,...,n)}. For simplicity, assume there
are no item-missing data in the observed data set, though the framework developed
in this article can be extended to handle this situation; this is a topic for future work.

The approach developed in this article conceptually involves two steps. First,
construct multiple synthetic populations, P = {(X® y®) 1 =1,2,...,M}. Sec-
ond, draw a sample, usually a simple random sample, from each synthetic population;
release these samples.

More specifically for the first step, when there are no confidentiality constraints on
releasing X, let X) = X and simulate (Y{);1 =1,2,..., M) as independent draws
from the posterior predictive distribution, Pr(Yez.|X, Yinc), i-e., conditional on the
observed data D and the model assumptions. If neither X nor Y can be released,
the whole population can be generated based on the posterior predictive distribution
of “super” or “future” populations, Pr(Xy, Y;|D), again conditional on the observed
data (which includes design and administrative variables) and model assumptions.
Thus, which variables are to be synthesized depends upon the specific confidentiality
constraints.

Usually, the population size N is too large to make it feasible to release the M
synthetic populations. The second step ensures the practicality of this approach. In
this step, a simple random sample of size k is taken from each synthetic population,
DO = (;cgll),yg),il =1,2,...,k), for | = 1,2,..., M. Then, the corresponding M
synthetic samples Dg,,, = {DW,l =1,2,..., M} are released. There may be other
versions of what is ultimately released. For instance, a portion of X may not have any
confidentiality constraints and so can be released for the entire population. Those
variables can be appended to D® for the units not in DW. If X is completely
confidential and cannot be released at all, one may use X to create the synthetic data
sets but release only (yi(ll), iy =1,2,...,k). In some circumstances, it may be desirable



to create the synthetic samples using a design other than a simple random sample,
but this increases the analysis burden for typical users.

2.2 Analysis of Synthetic Samples

Suppose that an analyst seeks inferences about a scalar population quantity Q =
Q(X,Y) that may depend upon both X and Y. Suppose that with a simple random
sample the analyst would use a point estimate ¢ and an associated measure of un-
certainty v. For example, ¢ could be the maximum likelihood estimate of the model
parameter (), and v could be the inverse of the observed information. Alternatively,
q and v could be the posterior mean and variance, respectively, of ) based on the
actual sample D. A frequentist could construct an unbiased estimate, ¢, of Q) with v
as its sampling variance.

Let (¢, v®), 1 =1,2,..., M be the values of ¢ and v computed on the M syn-
thetic data sets.Our approach is to consider (q(l),v(l),l = 1,2,..., M) as sufficient
summaries of the synthetic databases Dgy,, and construct approximations to the
posterior density Pr(Q|Dsy,). The suggested simplest approximation is the normal
distribution with the average of the estimates,

du = Zq(l)/M
l
as the posterior mean of (), and
TM = (1 + M_l)bM - @M,

where 7y = Y, 00 /M and by, = 3,(¢"Y) —qar)?/(M —1) as the approximate posterior
variance.

The minus sign for the average within variance is not a typographical error. It
arises formally as shown in Section 3. Intuitively, it occurs because the situation with
sythetic samples includes another level of sampling not present in the usual multiple
imputation setting: the random sampling of the units that compose the synthetic
samples from each multiply-imputed synthetic population. Because of this sampling,
the between imputation variance already reflects the usual within imputation vari-
ability.

A disadvantage of T}, as the variance estimate is that it can be negative. Though
Ty is useful and seems to work well in basic simulations, numerical routines can be
used to calculate the integrals involved in the construction of T}, very precisely, as
outlined in Section 4.



3 Evaluation of Inferences from Synthetic Data
Sets

In this section, we describe three sets of simulations used to compare the properties
of inferences from multiply-imputed synthetic data and actual data. The first two
simulations involve multivariate normal populations. Two approaches are used to
construct synthetic data sets: a parametric approach using a multivariate normal
imputation model and a nonparametric approach using the approximate Bayesian
bootstrap. In the third simulation, the 1994 Consumer Expenditure Survey data is
used as the target population, and synthetic data sets are created using the approxi-
mate Bayesian bootstrap.

3.1 Simulation Study 1

We create a population of size N = 1000 by drawing 1000 values from a 5-variate,
normal distribution with means equal to 0, variances equal to 1, and a common
correlation equal to 0.5. Next, 500 independent random samples of size n = 100 are
drawn from this population. Each such sample is considered to be the observed data
D. For each sample, M = 5 synthetic populations of size 1000 are created using
the procedure described below, and then a simple random sample of size k£ = 250
is drawn from each synthetic population. Thus, for each actual sample, D, of size
100, five synthetic samples of size 250 each are created; these are the released data,
Deyn = {DW, DO DO},

The synthetic data sets are created by drawing values from the posterior predictive
distribution under the following model assumptions. The data are assumed to follow a
multivariate normal distribution with unknown mean vector u and the unstructured
and unknown covariance matrix ¥. A noninformative prior, 7(u, ) oc |X|7Y2, is
used for the unknown parameters. Here the assumed model matches the true model
in terms of the form of the distribution, but the parametric structure of the assumed
model is more general. Suppose that 7 is the sample mean and S is the sample
covariance matrix for a particular sample. Standard Bayesian calculations lead to the
following procedure for creating synthetic data sets:

1. Simulate a Synthetic Population

e Generate a random variate, W, from a Wishart distribution with n—1 = 99
degrees of freedom and the associated matrix S™'/(n — 1). Define 3* =
WL

e Generate p* from a multivariate normal distribution with mean 7 and
covariance matrix ¥* /n.

e Generate N = 1000 independent multivariate normal random vectors with
mean u* and covariance matrix »*.



2. Repeat this process M = 5 times to create five synthetic populations of size
1000 each.

3. Obtain a simple random sample of size £ = 250 from each of the five synthetic
populations.

We assume that the estimand of primary interest is the regression coefficient of
the first variable on the other four. We perform ordinary linear regression analyses to
obtain ¢ and v based on the actual data, D and each of the corresponding synthetic
samples, DY 1 =1,2,...,5. We obtain 95% confidence intervals for the regression
coefficient from the synthetic data sets using the normal distribution approximation
discussed in Section 2, and from the actual data using the standard t-distribution.

Figure 1 displays the scatter plot of the 500 pairs of estimated regression coeffi-
cients from the actual samples and the corresponding synthetic data samples along
with a 45 degree line. The sampling distributions of the actual sample and synthetic
sample estimates of the regression coefficients are practically the same. Also provided
in Figure 1 are the proportions of 95% confidence intervals that contain the true value
of the coefficient and the average length of these intervals. For confidence coverage,
we use the average of the 500 actual sample estimates of the regression coefficients as
the true value. There are no meaningful differences in the coverage properties of the
synthetic sample and actual sample intervals. Hence, in this simulation, the repeated
sampling properties of the inferences from the actual and synthetic samples are very
similar, except that the intervals based on synthetic samples are slightly wider than
the intervals based on the actual data.

3.2 Simulation Study 2

The simulation study in Section 3.1 assumes multivariate normality when creating
synthetic data sets, which matches perfectly with the true model used to generate the
target population. Thus, this comparison of inferences from the actual and synthetic
data sets is under the “best” scenario where the imputer’s assumed model is also the
correct model.

In this study, we create synthetic data sets for the target population described
in Section 3.1 without relying on the true model. We use an approximate Bayesian
bootstrap where Step 1 in Section 3.1 is replaced with Step 1" as follows. Steps 2 and
3 are unchanged.

1" Simulate a Synthetic Population

e Draw n — 1 uniform random numbers, and sort them in increasing order.

Label this ordered sequence as ag = 0, a1, as,...,a, 1,0, = 1.
e Draw N uniform random numbers uy, ug, ..., uy. Select unit j (row j) if
aj—1 < u, < aj where r = 1,2,...,N. The resulting N X p matrix is a

synthetic population.



Figure 2 compares the sampling distributions of the 500 estimated regression co-
efficients from the actual and synthetic data sets. The confidence intervals from
the synthetic samples are slightly wider than those constructed with the imputation
method in Section 3.1; however, there is no apparent bias as the points are clustered
around the 45 degree line.

3.3 Simulation Study 3

The simulation studies in Sections 3.1 and 3.2 use multivariate normality to generate
the data and a linear regression model for the complete-data analysis to be applied to
the actual data. In realistic situations, the exact model that generated the population
is not known, and the model of interest may not be a linear regression.

To evaluate the synthetic data approach in a more realistic setting, we use the
1994 Consumer Expenditure Survey. We consider the complete data on N = 7,630
units in the 1994 CES data set to comprise the target population, P. The p = 28 vari-
ables of interest include expenditure, income and demographic variables. The actual
sample,D, is a simple random sample of size n = 500 from this population. We create
M = 5 synthetic populations, (73(1),73(2), .. .,73(5)), using the approximate Bayesian
bootstrap procedure. Multiply-imputed synthetic samples, (DM, D@ ... D) of
k = 250 records are randomly selected from each of the five synthetic populations.
This entire process is replicated 500 times.

The inferential model of interest is a Tobit model- a censored regression model for
a semi-continuous outcome variable (Tobin (1958), Amemiya (1973)). The outcome
variable is annual food expenditures away from home, and there are 26 predictors
including demographics (e.g., age race, sex, education, region, etc.), family char-
acteristics (e.g., number of earners, family structure, etc.), employment status and
log-income before taxes (primary variable of interest). This model was suggested by
a staff member at the Bureau of Labor Statistics as a model of substantive interest.

Figure 3 displays the scatter plot of the estimates from the 500 actual samples
and the corresponding synthetic data estimates. The sampling distributions of the
estimates are very similar to each other. The poor coverage of the actual sample
intervals reflects misspecification in the Tobit model. The synthetic sample confidence
intervals have slightly better coverage because of inflated variance estimates. This is
a reflection of the limited efficiency in the bootstrap approach for creating synthetic
data sets.

4 Theoretical Results

This section develops a Bayesian approach for combining inferences about @@ =
Q(X,Y) from a set of synthetic samples Dg,,. This is achieved by constructing
an approximate posterior distribution of @) given Dg,, in analogy with the theory



of multiple imputation for missing data. However, the standard multiple imputation
combining rules are not appropriate because of the subsampling of P to obtain DV,

The conceptual framework for creating the synthetic population outlined in Sec-
tion 2.1 suggests the following natural decomposition,

PT(Q|DSyn) = / [/ PT(Q‘D7PSyn;DSyn)Pr(D‘PSyn7DSyn)dD PT(PSyn|DSyn)d7DSyna

where Ps,,, = (PU,1=1,2,..., M) is the collection of synthetic populations. Clearly,
Psyn and Dg,, are irrelevant after conditioning on D because both are random
functions of D. Similarly, Dg,, is irrelevant after conditioning on Pg,,. Thus,
Pr(Q|D, Psyn, Psyn) = Pr(Q|D) and Pr(D|Psyn, Psyn) = Pr(D|Psyn). Thus, the
expression for Pr(Q|Dg,y,) simplifies to

Pr(QIDsyn) = [ | [ Pr(@ID)Pr(DPsyu)dD| Pr(Psyu Dsyn)dPsyn

= /PT‘(Q|P5yn)PT’(PSyn|DSyn)dPSyn (1)

Throughout this article, we assume that the sample sizes are large enough to
permit normal approximations for these posterior distributions. Thus, we require only
the first two moments for each distribution. To derive these conditional moments, we
use standard large sample Bayesian arguments. For example, to derive Pr(Q|Psyn),
we treat the first two moments of @) given Pg,, as unknown and use Pg,, as the data.
Similarly, for the first two moments of Pr(Psyn|Dsyn), we treat the first two moments
based on Pgy, as unknown and use Dg,, as the data. Diffuse priors are assumed for
all parameters.

4.1 Pr(Q|Psyn)

For I =1,2,...,M, let Q¥ = Q(X®, Y®) denote the computed value of the pop-
ulation quantity Q(X,Y) based on P"). The nonsampled units can be treated as
missing data and D as the observed data; hence, the standard multiple imputation
framework (Rubin, 1987) can be applied. Specifically, in equation (3.1.3) of Rubin
(1987, p. 76) set the average within-imputation variance Uy, = 0. This is true since
each U,; = 0 because each completed data set is an entire population. Then, based
on equations (3.1.5) and (3.1.6) from Rubin (1987, pp. 76-77),

Q|Psyn ~ tar—1(Qur, (1 + M~Y)By), (2)

where Qu = 3,QY /M, By = ¥,(QY — Qu)?/(M — 1) and t,(u, 0%) denotes a t
distribution with v degrees of freedom, location u and scale o2



4.2 PT(QM;BM|DSyn)

In practice, only the set of M synthetic samples Dg,y,, not the synthetic populations
Psyn, will be made available. The next step, therefore, is to derive the conditional
distribution, Pr(Qar, Ba|DPsyn), and then construct

Pr(QDsyn) = [ Pr(QI@u, Bu)Pr(Qu, BulDsyn)dQudBuy.

We derive Pr(Qus, Bar|Dsyn) by treating the {q(l),v(f),l =1,2,...,M} as suffi-
cient summaries of the synthetic data bases Dg,, and Qs and By, as parameters.
To obtain the sampling distribution for {¢),v® 1 = 1,2,... M}, we assume that
estimates from each synthetic sample are valid in the following sense:

(1) For each [, the estimate ¢() is unbiased for ); and asymptotically normal, with
respect to repeated sampling from the synthetic population P®), with sampling
variance V¥ = V(X0 y®),

(i) The sampling variance estimate v(¥) is unbiased for V), and the sampling vari-
ability in v is negligible. That is, v|P® ~ V®. Thus, v and V" are
interchangeable.

We also make the simplifying assumption that the variation in V% across the M
synthetic populations is negligible; that is, V) ~ V. Then, by (i), 7y = V.

Since the samples from the synthetic populations are independently drawn, the
dOIPO. Ty ~ ind N(QW, 5yy).

Using the standard Bayesian arguments based on these sampling distributions, it
follows that

QY ¢"Y var ~ ind N(¢V,vu),
and the posterior distribution of Q,; is,

Qu|Dsyn ~ N(qur, 1as /M), (3)

where gy = ¥, ¢ /M. Using the standard one-way analysis of variance setup (see
for example, Box and Tiao (1973)), the posterior distribution of B, is,

>u(qY — qur)?

‘DSyn ~ X?wfr (4)

4.3 Approximation of Pr(Q|Dsy,)

To obtain the posterior distribution of @) given Dg,y,, we should integrate the -
posterior distribution in equation (2) with respect to the posterior distributions of
Qu and By in equations (3) and (4). Although this integration can be carried
out numerically or using analytical approximations related to those used in Barnard
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and Rubin (1999), a basic approximation suitable for large M is useful in practice.
Specifically, we approximate the posterior distribution of @ given Dg,, by a normal
distribution with mean E(Q|Dg,y,) and variance Var(Q|Dgyn)-

Using the results in Sections 4.1 and 4.2,

E(Q|Dsyn) = E[E(Q|Qn)|Dsyn] = E(Qum|Dsyn) = qu- (5)
Similarly,
Var(Q|Dsyn) = E[Var(Q|Psyn)|Dsyn] + Var[E(Q|Psyn)Dsyn]
~ (1+ M~ ")E(By|Dsys) + 0 /M (6)
Based on the posterior distribution of By, given in Equation (4),

f(;X) BM<BM + @M)_%_l exp (_M) dBys

E(BulDsyn) = = ———— = =AY
J5° (Bas + aa) 5 exp (=i vy ) dBas
After substituting, u = (M — 1)bys/(Ba + Upr) in the above integral and simplifying,
we obtain (M — 1Ty s(r)
E(Bu|Dsyn) = ——L MMy g
( M| Sy ) QFM_l(TM) M Um
~ bM — @M; (7)

at least for large M, where 7y = (M — 1)by /0y and T (z) = [f§ exp(—x)z?/?>~'da.
The substitution of (7) into equation (6) yields

Tor = (1+ M Ny — 0y

for the approximate posterior variance of () given Dgyy,.

5 Randomization Validity

The inferential procedures in Section 4 are developed from a Bayesian perspective.
This section provides theoretical results concerning the conditions for randomization
validity of the procedures developed in Section 4.

We assume the conditions (i) and (ii) used in the previous section. We also
assume two conditions similar to those imposed by Rubin (1987) for randomization
validity of multiple imputation inferences. Condition (iii) requires the procedures
that the analyst would have used if the actual data D were available to be valid from
the randomization perspective. Specifically, QD is an unbiased estimate of Q(X,Y)
with respect to repeated sampling from the fixed population P = (X,Y). And, the
variance estimate Up, is an unbiased estimate of the sampling variance of @ p, which
we label as U, with negligible sampling variability relative to the variability of @ D-
In the notation of Rubin (1987), we require
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(i5)) Qp|X,Y ~ N(Q,U), and Up|X,Y ~ (U, << U).
Equivalently, Qp|X,Y ~ N(Q,Up).

Condition (iv) involves the randomization validity of the inferences based on the
synthetic populations Pg,,. Since this is a particular case of the standard multiple
imputation framework where the nonsampled units are treated as missing data, the
conditions for proper multiple imputations (Rubin 1987, pp. 118-119) are required.
Effectively, the synthetic data imputation procedures are proper when:

(iv) QWD ~ N(QD, UD). That is, the computed value of () based on the synthetic
population P% is an unbiased estimate of Qp.

Under conditions (7)-(iv), it can be shown that (1) g is an unbiased estimate of
Q(X,Y), and (2) T), is its asymptotically unbiased variance estimate.

5.1 Unbiasedness of g,

For the first assertion, note that
E(qm|P) = E[E{E(qy|Psyn)| D} P].

This expectation is determined by the assumed conditions. (1) implies E (@n[Psyn) =
Qu. Then, (iv) implies E(Qu|D) = Qp. Finally, (i47) implies E(Qp|P) = Q. Hence,
g is unbiased for Q).

5.2 Unbiasedness of T,

The second assertion involves determining the sampling variance of g5, with respect
to repeated sampling from P and showing 7T}, is an unbiased estimator of this vari-
ance. The derivation of the sampling variance involves repeated use of the standard
decomposition of the marginal variance as the sum of the variance of the conditional
mean and mean of the conditional variances. First, note that

Var(qgu|P) = E[Var(qu|Psyn)|P] + Var[E(qu|Ps)|P]. (8)

For all [, define E(V®"|P) = V,, where V) is as in (7). Since the samples are drawn in-
dependently from each synthetic population, it follows from (7) that Var(gu|Psyn) =
>y v /M. Taking the expectation with respect to Pr(Psy,|P), the first term in
equation (8) equals V,/M.

Since E(qu|Psyn) = Qu, the second term in equation (8) equals Var(Qum|P).
Using the usual variance decomposition,

Var(QuP) = VarlE(Qu|D)|P] + E[Var(Qu|D)IP]. (9)

The pieces in this variance are determined from the assumed conditions. (iv) implies
that E(Qu|D) = Qp. Hence, from (iii), the first term in (9) equals U. (iv) implies
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that Var(Qu|D) = Up/M. Hence, from (iii), the second term in (9) equals U/M.
Putting all the pieces of (8) together, the sampling variance of gus equals

Var(gu|P) = 1+ MU +V,/M. (10)

The variance estimate Ty, is valid, if E(Twy|P) = Var(gu|P). Using standard
one-way analysis of variance calculations,

E(by|P) = E[E(by|Psya)|P] = E(Var + By |P) =V, + E(Bu[P)

where Vi = Y3, Vi/M. Since E(By|P) = E[E(By|D)|P] and E(By|D) = Up from
(iv), it follows from (iii) that E(By|P) = U. Thus, by is an unbiased estimate

of V, +U. Under (i), v) and V) are essentially equivalent, so that E(,|P) ~
E(Vi,|P) = V,. That is, vy ~ (V,, << V). Thus,

E(Tu|P) = (1+M YE(bu|P)— M 'E(un[P)
= 1+MYHYU+V,/M
= Var(qu|P).

All the distributions in conditions (7)-(iv) are normal for location quantities, and
the distributions for scale quantities have lower order variability than the variabil-
ity for corresponding location quantities. Therefore, implied convolutions in all the
expectation and variance calculations involve normal distributions. Thus, asymptot-
ically, the sampling distribution of ¢, is normal with mean @) and variance given in
equation (10). Since T, is an unbaised estimate of the actual sampling variance,

T (G — Q) ~ N(0,1).

Thus, the large sample frequentist and Bayesian confidence intervals are identical.
Intervals constructed in accordance with conditions (i)-(iv) have valid confidence
coverage in large samples.

6 Discussion

In this article, we have evaluated multiple imputation as a framework for creating
synthetic databases that can be shared without compromising the confidentiality of
responses. Each synthetic data set is a plausible reflection of the target population
based on the collected data. We have evaluated a fully parametric approach and a
nonparametric approach using the approximate Bayesian bootstrap for creating plau-
sible populations. In these simulation studies, using artificial and genuine data sets,
the sampling properties of inferences from synthetic databases and the actual sam-
ple data sets are very similar. Further evidence of the effectiveness of the approach
is demonstrated by Reiter (to appear), who conducts simulation studies with com-
plex survey designs involving stratification, clustering and unequal probabilities of
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selection. For all these designs, the approach discussed in this article obtains approx-
imately valid point and interval estimates of population means, as well as regression
coefficients.

The quality of inferences from the synthetic data clearly depend upon the impu-
tation models. As shown in these simulations, it is possible to obtain valid inferences
from synthetic data from relationships accurately modeled in the imputation models.
On the other hand, inferences derived from inaccurately modeled relationships may
not be valid. This is illustrated in Reiter (2002), who shows how small biases in
imputation models can lead to synthetic point estimates with small mean squared
error but less than nominal confidence coverage.

A related issue is that some synthetic data sets may produce extreme estimates.
This possibility can be mitigated by constraining the imputations. For example, agen-
cies could constrain the imputations to match certain one-way and two-way margins
in the observed data. Abowd and Woodcock (2001) try to prevent extreme data sets
by constraining draws of parameters from posteriors to lie within three standard de-
viations of the observed data posterior means. Another approach is for agencies to
examine the inferences for several key estimands before releasing the M synthetic data
sets. If the gy for several widely-used means and regression coefficients are far away
from their corresponding q.s, the agency can redraw synthetic data. Agencies also
could check the synthetic data sets to verify protection of confidentiality, just as they
do for all other disclosure methods (e.g., swapping, adding noise, cell aggregation).

The synthetic data framework has many advantages. Agencies can borrow strength
from other data sources when generating imputations and even release synthetic copies
of such combined databases. Design information and nonsampling and measurement
error models can be utilized when creating synthetic databases. Regional, county
and community level information can be released, facilitating small area or com-
munity level analysis. Importantly, since each synthetic database can be a simple
random sample from the target population, users need only apply simple, unweighted
complete-data analysis techniques to each synthetic data set.

A disadvantage of this approach is the need to store and process each of the
multiple synthetic data sets. There now exist several macros in SAS and STATA
that allow simple processing of multiply-imputed data sets. The new versions of
SUDAAN (8.2 avilable now only as beta release), SAS (version 8.1) and WESVAR
(to be released soon) also incorporate multiple imputation analysis. However, these
packages as yet do not incorporate the modified combining rules presented here. In
general, the number of completed data sets should be larger in the synthetic data
context than in the standard missing data context because the fractions of missing
information can be larger.

Of the two data generation approaches discussed in this article, the parametric
model-based approach should protect confidentiality more effectively than the approx-
imate Bayesian bootstrap. In the latter approach, each synthetic database contains
several repeats of the observed records, whereas in the former approach the imputa-
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tions are all from a smooth distribution and do not contain any fully observed records.
The parametric model, however, is far more susceptible to model misspecification. A
compromise is to use a semiparametric approach, and work along these lines is in
progress.
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