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Owing to the growing concerns over data confidentiality, many national statistical agencies are considering remote
access servers to disseminate data to the public. With remote servers, users submit requests for output from statistical
models fit using the collected data, but they are not allowed access to the data. Remote servers also should enable
users to check the fit of their models; however, standard diagnostics like residuals or influence statistics can disclose
individual data values. In this article, we present diagnostics for categorical data regressions that can be safely and
usefully employed in remote servers. We illustrate the diagnostics with simulation studies.
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1 INTRODUCTION

As concerns over data confidentiality grow, in the near future national statistical agencies may
not be willing or legally allowed to release genuine data on individual units. In such a world,
one data dissemination strategy is remote access servers, to which users submit requests for
output from statistical models fit using the collected data, but they are not allowed access
to the data (Keller-McNulty and Unger, 1998; Duncan and Mukherjee, 2000; Schouten and
Cigrang, 2003). In fact, several statistical agencies are developing or already use remote servers
as part of their data dissemination strategies, including the Australian Bureau of Statistics,
Statistics Canada, Statistics Denmark, Statistics Netherlands, Statistics Sweden, the US Bureau
of the Census, the US National Agricultural Statistics Service, the US National Center for
Education Statistics, and the US National Center for Health Statistics (Rowland, 2003).

Remote access servers have advantages over disclosure limitation strategies that ultimately
release altered versions of the original data, such as collapsing categories or receding con-
tinuous variables into intervals (Willenborg and de Waal, 2001), swapping data values of
randomly selected units (Dalenius and Reiss, 1982), and adding noise to the original data
(Fuller, 1993). First, remote server analyses are based on the original data and so are free
from biases injected by data perturbation methods. Second, users of remote servers can fit
standard statistical models; there is no need to make corrections for measurement errors, as is
needed when analyzing perturbed data. Third, remote servers can protect confidentiality more
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effectively than releasing altered data, since no actual or close-to-actual values for individual
units are purposefully released.

In addition to providing basic output such as estimated model parameters and their standard
errors, the remote server output also should include some way for users to check the fit
of their models. Unfortunately, releasing the usual diagnostic statistics can disclose values.
For example, when actual residuals and fitted values are released for a submitted regression
model, the user can obtain the values of the dependent variable by simply adding the residual
to the fitted value. A way around this problem for linear regression models was proposed by
Reiter (2003): remote servers can provide synthetic, i.e. simulated, diagnostics that mimic
real-data diagnostics. For example, agencies can release synthetic values of dependent and
independent variables, residuals, and fitted values. Users then can treat these synthetic values
like ordinary diagnostic quantities, such as examining scatter plots of the synthetic residuals
versus the synthetic independent variables or versus the synthetic fitted values.

In this article, we propose remote server diagnostics for regressions involving categorical
dependent variables, in particular logistic and multinomial regressions. Unlike the diagnostics
for linear regressions in Reiter (2003), which are based on unit-specific residuals, the cate-
gorical data regression diagnostics are based on grouped residuals (Landwehr et al., 1984;
Gelman et al., 2000). The article is organized as follows. Sections 2 and 3 present remote server
diagnostics for logistic and multinomial regressions. Section 4 illustrates the diagnostics using
genuine data. Section 5 concludes with a discussion of the diagnostic measures.

We focus solely on diagnostics, assuming that the server has provided estimated coefficients
and standard errors for the submitted regression. It is possible that the estimated coefficients
and standard errors themselves are disclosure risks, regardless of the availability of diagnostic
measures. For example, when all units with the same covariate pattern have the same outcome
values, the fitted regression that includes an indicator variable for that pattern predicts outcomes
exactly for those units. We presume the server has been programmed not to provide output
for such unsafe regressions, so that any released estimated coefficients and standard errors
carry acceptable risks. We do not consider here strategies for assessing which regressions
have releasable output. This is an area of active research.

2 DIAGNOSTICS FOR LOGISTIC REGRESSIONS

Releasing unit-specific, logistic regression diagnostic measures, such as residuals or case
influence statistics, can result in disclosures. All units with outcome equal to one must have
negative residuals, and all units with outcome equal to zero must have positive residuals.
Hence, when the user is able to determine the sign of a unit’s residual, he or she knows the
value of that unit’s outcome. Similar problems exist for popular case influence statistics, such
as the changes in the total deviance or change in the Chi-squared test statistic after deleting
each observation from the data set (Pregibon, 1981; Hosmer and Lemeshow, 2000). Any unit
with a large case influence statistic does not fit the pattern of the model, so that its value of the
outcome must be as far as possible from its predicted probability. In other words, units with
large case influence statistics and small predicted probabilities have outcomes equal to one,
and units with large case influence statistics and large predicted probabilities have outcomes
equal to zero.

Adding noise to the residuals or to the case influence statistics generally will not transform
them into simultaneously safe and useful diagnostics. For residuals, the noise must be large
enough to cause users to be unsure of the signs of the actual residuals; this practically eliminates
the diagnostic utility of the released residuals.
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For case influence statistics, adding random noise leaves similar problems: when the noise is
small, the user still can associate large values with the units’ outcomes, and when the noise
is large the diagnostics have limited diagnostic utility. Hence, we do not believe it is feasible
in general to release case-specific, remote server diagnostic measures for logistic regressions.

We suggest instead to release grouped diagnostics, related to those proposed by
Landwehr et al. (1984) and Gelman et al. (2000). Let xp, for p = 1, . . . , d, denote the inde-
pendent variables in the user’s submitted logistic regression. The variables in xp may be
continuous or discrete. The server generates grouped diagnostics separately for each xp in
four steps: (i) partition xp into mp disjoint categories; (ii) calculate the percentages of ones in
the dependent variable for each of the mp categories, and add a small amount of noise to these
percentages; (iii) calculate the averages of the predicted probabilities from the fitted model
for each of the mp categories; and (iv) in each of the mp categories, release the medians of the
values of the xp, the perturbed percentages of ones, and the averaged predicted probabilities.
When the predicted probabilities are substantially different from the perturbed percentages in
some regions of xp, the model needs to be adjusted to fit better in those problematic regions.
In step (ii), server administrators can skip adding random noise to the observed percentages
when releasing exact percentages in the categories is not considered a disclosure risk.

The partitioned versions of xp are used only for diagnostic purposes. Coefficients and
standard errors of the logistic regression are estimated using xp as submitted by the user,
without any partitioning. Partitioning the xp for diagnostics ensures that the server does not
release individual units’ predictor values, which may be sensitive. The larger the partition
sizes, the greater the protection of individuals’ values of xp but the weaker the potential for
detecting model inadequacies. The smaller the partition sizes, the weaker the protection but
the greater the potential for detecting model inadequacies. The categories of any xp should be
the same for all submitted models, so that calls to different regressions do not inadvertently
reveal additional information about individuals’ predictor values.

The xp are partitioned marginally, i.e. without concern for the joint distributions among
the predictors. Partitioning marginally helps protect confidentiality by avoiding the creation
of cross-classified categories with small numbers of units. It also simplifies the construction
of the server: it need only generate diagnostics for the submitted regression. A downside to
drawing marginally is that the utility of the diagnostics is reduced. For example, suppose
the submitted logistic regression includes predictors for sex and for a dichotomous version
of race (minority and non-minority). Marginal diagnostics provide information on the model
fit only for the main effects of sex and race, which may not reveal race–sex interactions.
The user can assess the importance of interactions directly by submitting regressions that
include interaction terms, provided of course that the server is willing to release the output from
the fitted regression. Alternatively, the server could be programmed to provide diagnostics on
the basis of categorizations of joint distributions when they are safe to release. These judgments
are made before the server goes on-line.

Adding random noise to the observed percentages is advisable when the outcomes are
almost all zeros or ones for some categories of xp. For example, suppose only one unit in
some category of xp has a zero outcome. If the observed percentage is not perturbed, the unit
with that zero knows that all other units in its category have ones, which is a disclosure. We
perturb the number of ones in each category of xp by randomly adding a uniform draw from
(−2, −1, 1, 2). When the resulting, perturbed percentage of ones in any category is less than
zero or greater than one, we redraw until the perturbed percentage is in fact between 0% and
100%. Adding or subtracting a maximum of two units ensures that a released percentage could
have been generated from at least two values of the real-data percentages, which helps protect
confidentiality. Excluding zero from the set of possible random draws ensures that no exact
percentages are released. The same random seed should be used to generate the random noise
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for all logistic regressions involving the same outcome variable, so that users cannot refine
guesses of the observed percentages with repeated calls for the output from the same logistic
regression.

For categorical xp, the mp categories can be the levels of xp, provided there are sufficient
number of units in each level so as to prevent disclosures. When specific levels of xp do not
contain a sufficient number of units, they can be merged with others until an agency-specified
minimum size is reached. These determinations are made before the server is made available
to the public. For continuous xp, we recommend forming categories of 100 units with similar
values of xp, because adding or subtracting noise of at most 2% should not greatly distort
relationships between the real-data percentages and predicted probabilities for most values of
these quantities. The released diagnostics should include the number of units in each category
of xp, so that the user can determine how much error is added by any perturbations.

To illustrate the utility of these diagnostics, we simulate two scenarios using different spec-
ifications for the independent variables in the logistic regressions. For each simulation, we
generate n = 10,000 observations. The independent variables, x1 and x2, are randomly drawn
from N(0, 22). To generate the dichotomous dependent variable, we draw from Bernoulli dis-
tributions with probabilities, exp(g(x1, x2))/(1 + exp(g(x1, x2))), where the g(x1, x2) are as
shown in Table I.We generate grouped diagnostics using the methods outlined previously. Each
independent variable is split into m = 100 categories, each comprising k = 100 units. Random
noise is added to the real-data percentages, drawn uniformly from (−0.02, −0.01, 0.01, 0.02).

For the non-linearity simulation, we fit two models to the data. The first is a logistic regres-
sion that uses a linear function of x1, an incorrect model for the data. The second is the correct
logistic regression that fits a quadratic function of x1. Figure 1 displays the perturbed percent-
ages (labeled with ◦), and the predicted probabilities (labeled with ∗) from the incorrect model,
plotted against the values of the midpoints of the categories of x1 The predicted probabilities

TABLE I Scenarios for logistic regression simulations.

Case Logistic link

Non-linearity g(x1, x2) = −3 + 4.3x1 + 1.5x2
1

Interactions g(x1, x2) = 1 + 2.2x1 − 4.6x2 + x1x2

FIGURE 1 Diagnostics for non-linearity simulation when using the incorrect logistic regression model.
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FIGURE 2 Diagnostics for non-linearity simulation when using the correct logistic regression model.

differ greatly from the perturbed percentages, an indication that the user should modify the
model. As shown in Figure 2, adding the quadratic term to the model greatly improves the fit,
and the predicted probabilities closely resemble the perturbed percentages. This clearly illus-
trates the utility of these diagnostics in model evaluation over including only the coefficients
and standard errors in the logistic regression output.

For the interactions scenario, we also fit an incorrect and the correct model. The incorrect
model uses just the main effects of x1 and x2, whereas the correct model includes the main
effects and the interaction. As shown in Figure 3, the main effects model leads to poor cor-
respondence between the perturbed percentages and predicted probabilities; the diagnostics
reveal that this model does not fit the data. Figure 4, on the other hand, shows coherence
between the predicted probabilities and the perturbed percentages, correctly suggesting that
this model is a reasonable fit to the data.

FIGURE 3 Diagnostics for interactions simulation when using the incorrect logistic regression model.
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FIGURE 4 Diagnostics for interactions simulation when using the correct logistic regression model.

3 DIAGNOSTICS FOR MULTINOMIAL REGRESSIONS

In multinomial regressions, the outcome variable has h > 2 categories. Each unit’s residuals
are an h × 1 vector, (y1 − π̂1, y2 − π̂2, . . . , yh − π̂h), where yj = 1 when the unit’s outcome
is in category j and yj = 0 otherwise. The only positive value in the residual vector is for the
category matching the unit’s outcome. Hence, releasing even the signs of the unit’s residuals
from a particular multinomial regression discloses the unit’s outcome. Introducing doubt about
the direction of the signs would require so much noise so as to render the released residuals
useless for diagnostics.

As for logistic regression, we propose to release grouped diagnostics rather than case-
specific diagnostics. The xp are partitioned into mp categories. Once again, the partitioning
is used only for diagnostics; the multinomial regression coefficients are estimated using xp

as submitted by the user. For each of the mp categories, the server computes the number of
units in each of the h outcome categories, and, if desired by the server administrator, adds
random noise to these counts drawn from (−2, −1, 1, 2). For each level of the categorized
xp, the server releases the medians of the values of xp, the perturbed percentages of units in
each of the outcome categories, and the average predicted probabilities. Users can examine
these quantities to determine whether or not the predicted probabilities closely resemble the
perturbed percentages. Similar diagnostics can be used on proportional Odds models for
ordered categorical data, on the basis of predicted and perturbed cumulative probabilities.

We illustrate these diagnostics using simulations like those in Section 2. We generate n =
10,000 observations with independent variables, x1 and x2, drawn randomly from N(0, 22).
To generate the dependent variables, we draw from multinomial distributions with h = 3
categories and the following probabilities for the three categories:

π0 = 1

1 + exp(g1(x1, x2)) + exp(g2(x1, x2))

π1 = exp(g1(x1, x2))

1 + exp(g1(x1, x2)) + exp(g2(x1, x2))
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π2 = exp(g2(x1, x2))

1 + exp(g1(x1, x2)) + exp(g2(x1, x2))

with the values of exp(g1(x1, x2)) and exp(g2(x1, x2)) shown in Table II.
Using these data sets, we generate grouped diagnostics by splitting each independent

variable into m = 100 categories, each consisting of k = 100 units. The real-data percent-
ages for each category are perturbed by adding random draws from (−2, −1, 1, 2) to the
numbers of ones. All multinomial regressions are fit using the ‘multinom’ function in the
software package R.

For the non-linearity simulation, we fit two functions of x1 in the multinomial regression
models: an incorrect linear function and the correct quadratic function. Figure 5 displays the
perturbed percentages (labeled with ◦) and the predicted probabilities (labeled with ∗) from
the incorrect, linear function for the three values of dependent variables (y = 1, 2, and 3). The
predicted probabilities differ widely from the perturbed percentages, reflecting the lack of fit.
As displayed in Figure 6, adding the quadratic term to the model greatly improves the fit.

In the interaction simulation, we once again fit both an incorrect and correct model. The
incorrect model only uses the main effects of x1 and x2, whereas the correct model includes
these main effects along with the interaction. The synthetic diagnostics in Figure 7 properly
show the lack of fit for the main effects model, particularly for larger values of x1. Figure 8
shows that once the interaction is included in the model, there is better correspondence between
the predicted probabilities and perturbed percentages, which suggests that the model is a
better fit.

TABLE II Scenarios for multinomial regression simulations.

Case Logistic link

Non-linearity g1(x1, x2) = 3.1 − 2.5x1 + 1.8x2
1

g2(x1, x2) = 2 − 1.6x1 + 1.4x2
1

Interactions g1(x1, x2) = 2 + 1.5x1 − 0.8x2 + x1x2
g2(x1, x2) = 1.5 + 2.2x1 − 0.4x2 + x1x2

FIGURE 5 Diagnostics for non-linearity simulation when using the incorrect multinomial regression model.
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FIGURE 6 Diagnostics for non-linearity simulation when using the correct multinomial regression model.

FIGURE 7 Diagnostics for interactions simulation when using the incorrect multinomial regression model.

FIGURE 8 Diagnostics for interactions simulation when using the correct multinomial regression model.
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4 SIMULATIONS WITH GENUINE DATA

We next investigate the utility of these remote server diagnostics for logistic and multinomial
regressions on genuine data. The data comprise 10,000 randomly sampled heads of households
from the public release files of the March 2000 US Current Population Survey. Table III
describes the variables used in the models.

Marital status, M , has seven types: M = 1 for married civilians with both spouses present
at the home; M = 2 for married people in the armed forces with both spouses present at
the home; M = 3 for married people with one spouse not present at the home; M = 4 for
widowers; M = 5 for divorced people; M = 6 for separated people; and, M = 7 for people
who never have been married. Highest attained education level, E, increases from 31 to 46 in
correspondence with years of schooling. As examples, E = 31 represents highest educational
attainments of less than first grade; E = 39 represents a high school degree; E = 43 represents
a bachelor’s degree; and, E = 46 represents a doctoral degree. Out of the 10,000 households,
6612 have positive property taxes, P , and the remainder have zero property tax. All 10,000
households have positive income, I . Both monetary variables have long right tails.

From these data, we seek to fit a logistic regression model to predict whether or not house-
holds have positive property taxes, and to fit a multinomial regression model to predict marital
status for the household head. For simplicity, complications due to the complex sampling
design are ignored, and the 10,000 households are treated as a simple random sample. The
models we consider are not the best models for predicting property taxes, but they are useful
for illustrating the remote server diagnostics.

4.1 Property Tax Logistic Regression

In the model descriptions to follow, a bold-face letter corresponds to an independent variable
fit, as a continuous variable and a plain letter represents variables fit as a series of indicator
variables. Using the GLIM notation of McCullagh and Nelder (1989), the initial function of
predictors in the fitted logistic regression model is

1 + I + G + E + N + Y + M + X + R (1)

When constructing the remote server diagnostics, we categorize the continuous variables in
groups of 100 and add random noise from (−2, −1, 1, 2) to the observed numbers of people
with positive property taxes. In the plots involving N, all levels of N ≥ 7 are collapsed into
one level of ‘at least 7’ because there are few households of those sizes. This helps protect the
confidentiality of these large households.

Figure 9 displays the remote server diagnostics for each of the eight independent variables.
For most variables, the predicted probabilities and the perturbed percentages are similar.

TABLE III Variables from CPS data used in simulations.

Variable Label Range

Sex X Male, female
Race R White, black, Asian, Amer. Indian
Marital status M Seven categories, coded 1–7
Highest attained education level E 16 categories, coded 31–46
Age (years) G 0–90
Number of people in house N 1–16
Number of youths (under 18 years) in house Y 0–10
Household property taxes ($) P 0–99,997
Household income ($) I 1–768,742
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FIGURE 9 Diagnostics for initial logistic regression model for property taxes. For number in household, ‘7’includes
households with at least seven people; for number in household less than age 18, ‘5’ includes households with at least
five youths.

FIGURE 10 Diagnostics plot for age for updated logistic regression model for property tax.
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FIGURE 11 Diagnostics plot for log(income) for updated logistic regression model for property tax.

They deviate most noticeably for I and G, particularly at high values of those variables. To
improve model fit, we add G2 and replace I with log(I). The quadratic function of age is
plausible: younger and older individuals are less likely to own a home than middle-aged
individuals. Taking the logarithm of income pulls in extreme values of income. There also
appears to be a difference in the predicted and perturbed percentages for households of size
at least seven, which suggests adding a quadratic term in household size may improve fit.

On the basis of these diagnostics, we fit the updated logistic regression model with the
predictor function:

1 + log(I) + G + G2 + E + N + N2 + Y + M + X + R (2)

FIGURE 12 Diagnostics plot for number in household for updated logistic regression model for property tax.
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TABLE IV � of deviance test statistics for updated logistic regression model for property
tax. The baseline model is the initial model in Eq. (2).

Added term ∆ Deviance ∆ df Proposed model Comparison model

G2 150.3 1 (1) + G2 (1)
log(I) 47.8 1 (1) + G2 − I + log(I) (1) + G2

N2 9.5 1 (1) + G2 − I + log(I) + N2 (1) + G2 − I + log(I)

Figures 10–12 show the remote server diagnostics for the updated model for age, income, and
household size. The predicted probabilities for the updated model are closer to the perturbed
percentages than those for the initial model, indicating improvement in the model fit. The
additional predictors are statistically significant, as evident in the change of deviance test
statistics displayed in Table IV.

FIGURE 13 Diagnostics using linear function of number in household for multinomial regression for marital status.
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4.2 Marital Status Multinomial Regression

For the multinomial regression for the predicting marital status, the initial function of the
predictors is:

1 + P + I + G + N + Y + E + X + R (3)

As before, when constructing the remote server diagnostics, we categorize the continuous
variables in groups of 100, except for those with prespecified levels which required some
form of level collapsing. We then added random noise from (−2, −1, 1, 2) to the observed
number in each category.

The resulting graphical displays are too numerous to present here. We focus on the diag-
nostic plots involving number of people in the household, displayed in Figure 13. To protect
confidentiality, we combine all households with six or more people into one category to
attain sufficient numbers; there are few households of those sizes and they pose a potential
disclosure risk.

FIGURE 14 Diagnostics using indicator variables for number in household for multinomial regression for
marital status.
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The linear trend in the predicted probabilities does not match the perturbed percentages.
There are several large discrepancies for M = 1 and 7. These indicate that the model does
not fit the data well and can be improved. Owing to the discrete nature of household size,
it is reasonable to model N as a series of indicator variables. We note that once N > 3, the
perturbed percentages appear to be fairly steady. Hence, we are led to fit N as a series of
indicators, one each for N = 1, 2, 3, and ≥4, using the latter as a baseline category. The
resulting model fits the data much better, as indicated by the updated diagnostics in Figure 14.

The diagnostic plots for the other variables, not shown here, suggest modeling number of
youths in the household as a series of indicator variables, and adding a quadratic term for age.
The other variables appear reasonably modeled with main effects and linear functions.

5 CONCLUDING REMARKS

The simulation studies indicate that the diagnostics proposed here can improve the utility
of remote access servers relative to releasing only the basic output from queries, without
substantially compromising confidentiality. The general approach of these diagnostics can be
applied for any type of link function submitted by the user, including non-linear or spline
functions of the predictors. The diagnostics may not work well when the probabilities of
‘success’ for the dependent variable change radically within small regions of xp, especially
when the partition sizes must be relatively large to ensure data confidentiality. This type of
risk/utility tradeoff is typical of disclosure limitation techniques.

The ideas underpinning these diagnostics can aid model construction. For example, for large
data sets, one approach is to split the data set into training and evaluation units. The training
units are used to estimate coefficients of the models, and the evaluation units are used to check
the model fit. To assist users’ model specification, the server can generate the diagnostics
on the basis of the training units’ data, as done in this article. The diagnostics also can be
fruitfully applied to the evaluation units’data. That is, for the evaluation data, the server releases
the medians of categorized versions of the xp, the averages of the predicted probabilities,
and the averages of the perturbed percentages. Large discrepancies in the average predicted
probabilities and the perturbed percentages indicate lack of fit.
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