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Abstract

Multiple imputation is a common approach for handling missing data. It allows users to make valid in-
ferences using standard complete-data methods with simple combining rules. A variation is to partition the
missing data into two portions and conduct the imputation in two stages. We review two-stage multiple im-
putation and existing inferential methods and derive an alternative reference F -distribution for large sample
hypothesis testing for high-dimensional estimands. We also derive formulas for estimating rates of missing
information.
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1. Introduction

Multiple imputation was first proposed for handling nonresponse in large complex surveys. The goal
was to facilitate valid inferences when the data producer and the ultimately many end users of the data
were distinct entities. In this scenario, the burden of modeling the missing data mechanism lies on the data
producer, who may have skills and information unavailable to the users, while the users are able to focus on
their analyses without learning new or complex missing data methods (Rubin, 1996). Multiple imputation
is now commonly used to handle missing data by agencies as well as individual users. Several software
packages, including R, SAS, and SPlus, have routines that simplify the process for both filling in missing
values with multiple imputations and drawing inferences from completed datasets. In addition to missing
data, multiple imputation is now used in other applications, including statistical disclosure limitation (Rubin,
1993; Little, 1993; Reiter, 2005, 2003) and measurement error (Clogg et al., 1991; Cole et al., 2006). These
are reviewed in Reiter and Raghunathan (2007).

Nested or two-stage imputation refers to multiple imputation conducted in a nested fashion. In the first
stage, m imputations are generated. In the second stage, n imputations are generated for each completed data
set in the first stage, resulting in a total of M = mn multiply-imputed data sets. Nested multiple imputa-
tion was first proposed in Shen (2000), motivated in part by the multiple imputation of missing data in the
National Medical Expenditure Survey. In this project, a large number of imputations were generated, with re-
duced computational burden, by splitting the missing data into two parts, where one part was computationally
intensive and the other computationally inexpensive. First, a small number of imputations were generated for
the computationally intensive portion, which included all the data except medical expenditures with missing
disease codes. These took ten days per imputation to create. Then, for each imputed dataset, several impu-
tations were generated for the inexpensive portion comprising the missing disease codes and the associated
expenditures. Releasing M imputations reduced variances relative to releasing only m imputations (Rubin,
2003; Shen, 2000).
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In addition to reducing computational burdens, two-stage imputation is useful when imputation of one
partition would be substantially easier if the other were known and when different numbers of imputations
are desired for two partitions of missing data. Additionally, it is often the case that missing data are of
different types, such as planned and unplanned nonresponse, which contribute qualitatively different types
of variability. While one-stage imputation may still be used in these cases, the use of two-stage imputation
can result in inferences with reduced variances. Two-stage imputation also can enable imputers to isolate the
effects of different types of missingness, evaluate different sources of variability, and measure the expected
increase in information if one part were known. These can inform future studies (Harel and Schafer, 2003).

Two-stage imputation has been applied in applications of multiple imputation other than handling missing
data. Reiter and Drechsler (2007) show that two-stage imputation can reduce computational burdens when
using multiple imputation for statistical disclosure control. They also use two-stage imputation to release
fewer imputations for variables at high risk of disclosure than for variables at low risk of disclosure. Reiter
(2007) uses two-stage imputation to enable valid inferences when some of the records used to generate the
imputations are not made available to the analyst. An example of this is when multiple imputation is applied
to address measurement error using external validation data that are not released. Reiter (2004) uses two-
stage imputation approach to address disclosure limitation and missing data simultaneously. Additional uses
of two-stage multiple imputation are suggested in Harel and Schafer (2003) and Reiter and Raghunathan
(2007).

The remainder of this article focuses on two-stage multiple imputation for missing data. Section 2 reviews
two-stage multiple imputation and existing inferential methods. Section 3 presents an improved multivariate
test for high-dimensional estimands. Section 4 illustrates the improved performance of the proposed test with
simulations. Section 5 reviews the work of Harel and Schafer (2003) on rates of missing information and
extends to multivariate estimands with finite M .

2. Review and notation

For a finite population of size N , let Il = 1 if unit l is selected in the survey, and Il = 0 otherwise, where
l = 1, . . . , N . Let I = (I1, . . . , IN ), and let the sample size s =

∑
Il. LetX be theN×dmatrix of sampling

design variables, such as stratum or cluster indicators, and assume that X is known at least approximately for
the population. Let Y be the N × p matrix of survey data for the population. Let Yinc = (Yobs, Ymis) be the
s× p sub-matrix of Y for units with Il = 1, where Yobs is the portion that is observed and Ymis is the portion
that is missing due to nonresponse. Let R = (R(A), R(B)), where R(A) is an N × p matrix of indicators such
that R(A)

lk = 1 if the response for unit l to item k is missing and to be imputed in the first stage and R(A)
lk = 0

otherwise, and R(B) be the corresponding N × p matrix of indicators for the second stage of imputation and
partition Ymis into Y (A)

mis and Y (B)
mis .

To generate imputations, the imputer first fills in Y (A)
mis with m draws from the posterior distribution of

(Y (A)
mis |Dobs), resulting in m partially completed datasets, Dpcom = {D(i)

pcom, i = 1, . . . ,m}, where D(i)
pcom

is comprised of Dobs, Y
(B)
mis , and the ith imputation of Y (A)

mis . Then, for each D(i)
pcom, the imputer fills in

Y
(B)
mis with n draws from the posterior predictive distribution of (Y (B)

mis |D
(i)
pcom, R(B)), resulting in a total of

M = mn imputed datasets Dcom = {D(i,j)
com , i = 1, . . . ,m; j = 1, . . . , n}, where D(i,j)

com is comprised of
Dobs, the ith imputation of Y (A)

mis and the jth imputation of Y (B)
mis .

Shen (2000) describes a second, equivalent method of generating imputations in two stages. In this
procedure, m imputations of Y (A)

mis and Y (B)
mis are drawn in the first stage from the joint posterior distribution

of (Y (A)
mis , Y

(B)
mis |Dobs). In the second stage, an additional n − 1 conditionally independent imputations are

drawn from the distribution of (Y (B)
mis |D

(i)
pcom, R(B)). This approach is advantageous when it is easier to

specify or draw from the distribution of (Y (A)
mis , Y

(B)
mis |Dobs) than from the distribution of (Y (A)

mis |Dobs).
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When nested imputation is used for the purpose of reducing computational efforts, the computationally
intensive portion is naturally chosen to be imputed first so as to minimize the number of imputations, so that
m < n. Absent computational concerns, for randomization validity it makes sense to impute the portion
with a greater proportion of missing values first, so that m > n. Harel (2003) suggests setting n = 2 and
choosing m to obtain the desired precision, unless the rate of missing information in the first stage is thought
to be much smaller than in the second. In the similar setting of two-stage imputation for missing data and
disclosure limitation, Reiter (2008) found improved inferences when m > n, particularly for large fractions
of missing data in the first stage.

Estimates based on two-stage multiple imputation can have smaller or larger variances than those based
on one-stage imputation. It depends on how one makes the comparison. Compared to one-stage imputation
with m data sets, two-stage imputation with M data sets provides more information (lower variances) for
estimates that depend on Y (B)

mis ; there are no differences in the variances of estimates that depend only on
Y

(A)
mis . Compared to one stage imputation with M data sets, two stage imputation provides less information

(higher variances). This is because the second stage imputations are correlated and represent fewer than M
independent pieces of information.

When the imputer believes that r one-stage imputations provide adequate precision, but for computational
reasons wants to generate m < r imputations in the first stage of two-stage imputation, the imputer must set
M > r to achieve similar precision (for estimates that depend on Y (B)

mis ). Results from Shen (2000) suggest
the reduction in computational effort for the imputations in the first stage is offset somewhat by the need for
more imputations in the second stage to achieve a precision similar to r imputations in one-stage imputation.

2.1 Existing inferential methods
Shen (2000) develops a combining rule for univariate estimands and derives a test for multicomponent

estimands, noting that the analytic validity does not hold when the dimension of the estimand is high rela-
tive to the number of imputations. Valid inferences for multiply-imputed data are obtained for a parameter
Q by obtaining standard complete-data estimates from each completed dataset D(i,j)

com and applying simple
combining rules. The combining rules for one-stage multiple imputation of Rubin (1987) do not apply to
data imputed in two stages, as the imputations are not exchangeable. The following quantities are needed for
inferences about some k-dimensional parameter Q:

Q̄ =
m∑
i=1

n∑
j=1

Q(i,j)/mn =
m∑
i=1

Q̄(i)/m (2.1)

Ū =
m∑
i=1

n∑
j=1

U (i,j)/mn (2.2)

W̄ =
m∑
i=1

n∑
j=1

(Q(i,j) − Q̄(i))2/m(n− 1) =
m∑
i=1

W (i)/m (2.3)

B =
m∑
i=1

(Q̄(i) − Q̄)2/(m− 1) (2.4)

where Q̄(i) is the average of the point estimates in the nest of datasets indexed by i, Q̄ is the average of the
Q̄(i) across nests; W (i) is the within-group variances of the point estimates in the nest of datasets indexed by
i, and W̄ is the average of the W (i); B is the between-group variance of the Q̄(i) across nests; and, Ū is the
average of the estimated variances of Q(i,j) across all imputed datasets.

Inferences for some scalar parameter q are based on the quantities in (2.1) to (2.4) with k = 1. The
estimate of q is q̄, and the variance of q̄ is Tn = (1 + 1/m)b + (1 − 1/n)w̄ + ū, where lower-case letters
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denote scalar quantities. If w̄ = 0 or n = 1, Tn reduces to Tm = ū + (1 + 1/m)b, the standard variance
estimate for one-stage multiple imputation (Rubin, 1987). When the sample size s is sufficiently large,
inferences for q can be based on t-distributions with mean q̄, variance Tn and degrees of freedom νn ={

((1+1/m)b)2

(m−1)T 2
n

+ ((1−1/n)w̄)2

m(n−1)T 2
n

}−1

.

With one stage multiple imputation, Tm can be biased in some settings (Wang and Robins, 1998; Robins
and Wang, 2000; Nielsen, 2003; Kim et al., 2006). However, Rubin (2003) and others argue that the bias
typically is not substantial enough to outweigh the benefits of using Tm and multiple imputation in general.
Similar results hold for Tn in two stage imputation. For example, Shen (2000) demonstrates that Tn results
in inferences with good frequentist properties in a variety of settings.

2.2 Inferences for multivariate parameters
Generalizing from the univariate case, letQ be a multicomponent estimand, such as a vector of regression

coefficients. The quantities in (2.1) through (2.4) are used for inferences about Q, with the expected value
given by Q̄. An estimate of the variance of Q̄ is given by Tn = (1 + 1/m)B + (1− 1/n)W + Ū .

When testing H0 : Q = Q0, for multivariate parameter Q, it may seem reasonable to use a Wald test with
test statistic (Q0 − Q̄)T−1

n (Q0 − Q̄) when the sample size s is sufficiently large; however, Tn can be a poor
estimate of the variance when m and n are modest. Estimating B and W̄ for modest values of m and n is
akin to estimating the covariance matrix with few observations relative to the dimension. Hence, tests based
on this covariance estimate perform poorly in cases of practical interest, and a modification is needed.

When the covariance matrices U (i,j) are available, we use the test statistic

Sn = (Q0 − Q̄)′Ū−1(Q0 − Q̄)/k(1 + r(b)
n + r(w)

n ) (2.5)

where

r(b)
n = (1 + 1/m)tr(BŪ−1)/k (2.6)

r(w)
n = (1− 1/n)tr(W̄ Ū−1)/k. (2.7)

Shen (2000) proposes an approximate Bayesian p-value extending the approach of Rubin (1987). This is
obtained by referring Sn to an Fk,w∗

n
distribution, where

w∗n =

{
(r(b)
n )2

νb(1 + r
(b)
n + r

(w)
n )2

+
(r(w)
n )2

νw(1 + r
(b)
n + r

(w)
n )2

}−1

(2.8)

and νb = k(m− 1) and νw = km(n− 1).
Some software programs may not make covariance matrices of parameter estimates readily available,

and Ū may be unwieldy for large k. Meng and Rubin (1992) developed an alternative test for conventional
multiply-imputed data for missing data, based on the set of log-likelihood ratio test statistics from a set of
completed datasets. These do not require any Uij and are easily computed for common models appropriate
for the standard combining rules. Shen (2000) also extended this approach to two-stage imputation.

The basis of the approach is the asymptotic equivalence of the Wald and log likelihood ratio test statistics.
A test statistic S̃n is found that is asymptotically equivalent to Sn and can be computed with access only to
the Wald statistics calculated using each individual synthetic dataset. The asymptotic relationship between
the Wald and log likelihood ratio statistics is used to obtain the test statistic, S̃n, and denominator degrees of
freedom w̃∗n. The test is conducted by referring S̃n to an Fk,w̃∗

n
-distribution. For details of the test and its

derivation, see Shen (2000).



Inferences for Two-Stage Multiple Imputation for Nonresponse 5

3. Proposed test for multivariate estimands

Shen (2000) found that the test based on Sn andw∗n exhibited poor frequentist properties when k was large
relative tom. The corresponding test for single-stage multiple imputation is known to have the same problem.
Li et al. (1991a) proposed an alternate denominator degrees of freedom to that of Rubin (1987) for one-
stage multiple imputation that has better frequentist properties. It is widely used for testing multicomponent
hypotheses. We extend this approach to two-stage multiple imputation and use a new denominator degrees
of freedom given by:

wn = 4 +

{
1 +

r
(b)
n νb
νb − 2

+
r

(w)
n νw
νw − 2

}2

/

{
(r(b)
n νb)2

(νb − 2)2(νb − 4)
+

(r(w)
n νw)2

(νw − 2)2(νw − 4)

}
. (3.1)

When W̄ = 0 or n = 1, Sn and wn reduce to the test statistic and degrees of freedom for missing data
imputed in one stage (Li et al., 1991a). Similarly, the likelihood ratio test of Shen (2000), described in
Section 2.2, is based on wn rather than w∗n.

When νb ≤ 4 or νw ≤ 4, wn is not defined; however, this only occurs for cases with m = 2 and k small.
When a user is faced with a situation where wn is undefined, the test is based on w∗n.

3.1 Derivation
The derivation given here for the test statistic Sn is similar to that presented in Shen (2000); however, the

derivation of the reference distribution is substantially different. Most notably, we do not ignore the lack of
independence between the variance parameters corresponding to the between-nest and within-nest variances.

Let B∞ = limB as m → ∞ and n → ∞; let W̄∞ =
∑
W

(i)
∞ /m where W (i)

∞ = limW (i) as n → ∞;
and, let Ū∞ = lim Ū as m → ∞ and n → ∞. Assuming the conditions for valid inferences under multi-
ple imputation (Rubin, 1987; Harel, 2003), the posterior distribution of (Q|Dcom, B∞, W̄∞) is N(Q̄, T∞),
where T∞ = Ū∞+(1+1/m)B∞+(1+1/mn)W̄∞. If T∞ were known, then the Bayesian p-value for test-
ingH0 : Q = Q0 would be P (χ2

k > (Q0−Q̄)′T−1
∞ (Q0−Q̄)). Since T∞ is generally not known, the p-value

is obtained by integrating over the conditional distributions of the variance parameters (B∞|Dcom, W̄∞) and
(W̄∞|Dcom): ∫∫

P{χ2
k > (Q0 − Q̄)′T−1

∞ (Q0 − Q̄)|Dcom, B∞, W̄∞} ×

P (B∞|Dcom, W̄∞)P (W̄∞|Dcom)dB∞dW̄∞. (3.2)

To obtain a closed-form approximation, and to reduce the number of variance parameters to be estimated,
we assume that the between-nest varianceB∞ and within-nest variance W̄∞ are both proportional to the total
variance and hence to Ū∞:

B∞ = r(b)
∞ Ū∞, W̄∞ = r(w)

∞ Ū∞ (3.3)

for scalar quantities r(w)
∞ and r(b)

∞ , not assumed to be equal. That is, for each stage, we assume equal fractions
of missing information (which can differ by stage) for each component of Q. Under (3.3), (3.2) reduces to∫∫

P

{
χ2
k >

(Q0 − Q̄)′U−1
∞ (Q0 − Q̄)

1 + (1 + 1
m )r(b)

∞ + (1 + 1
mn )r(w)

∞
|Dcom

}
×P (r(b)

∞ |Dcom, r
(w)
∞ )P (r(w)

∞ |Dcom)dr(b)
∞ dr(w)

∞ . (3.4)

Under asymptotic theory for the sampling distribution of the posterior variance, which tends to have lower
posterior variance than the mean, Ū∞ can be replaced with Ū (Rubin, 1987, p.89). Generalizing from the
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theory for univariate estimands, we have

{B|(B∞ + W̄∞/n)−1|Dcom, W̄∞)} ∼ Wish(m− 1, I)
{W̄∞(W̄∞)−1|Dcom)} ∼ Wish(m(n− 1), I).

Assuming (3.3), applying standard multivariate normal theory, and averaging across nests, the conditional
distributions of r(b)

∞ and r(w)
∞ follow as:{
k(m− 1)tr(BŪ−1)/k

r
(b)
∞ + r

(w)
∞ /n

|Dsyn, r
(w)
∞

}
∼ χ2

k(m−1){
km(n− 1)tr(W̄ Ū−1)/k

r
(w)
∞

|Dsyn

}
∼ χ2

km(n−1).

Using the above and (3.4), and substituting in (2.5), (2.6) and (2.7), we have

P

{
(χ2
k/k)

(1 + χ−2
νb
νbr

(b)
n + χ−2

νw
νwr

(w)
n )

(1 + r
(b)
n + r

(w)
n )

> Sn

}
. (3.5)

The left-hand side of the inequality in (3.5) is approximated as proportional to an Fk,wn distribution
by matching the first two moments of each, so that the approximate p-value is P (δFk,wn

> Sn), for a
proportionality constant δ. Equivalently, the quantity (1 + χ−2

νb
νbr

(b)
n + χ−2

νw
νwr

(w)
n ) is approximated as

proportional to an inverse chi-square distributed random variable with degrees of freedom wn by matching
the first two moments of ηχ−2

w , for proportionality constant η:

E(ηχ−2
w ) = η/(wn − 2)

≈ 1 + νbr
(b)
n /(νb − 2) + νwr

(w)
n /(νw − 2)

E{(ηχ−2
w )2} = η2/(wn − 2)(wn − 4)

≈ 2(νwr
(w)
n )2

(νb − 2)2(νw − 4)
+

2(νbr
(b)
n )2

(νb − 2)2(νw − 4)
+

(
1 +

νbr
(b)
n

νb − 2
+
νwr

(w)
n

νw − 2

)2

Solving these expressions gives the expression for wn in (3.1) and η = (wn − 2)(1 + νbr
(b)
n /(νb − 2) +

νwr
(w)
n /(νw − 2)). Substituting into (3.5), δ = (η/wn)/(1 + r

(b)
n + r

(w)
n ). For sufficiently large νb and νw,

δ ≈ 1, so Sn is referred to the Fk,wn
distribution.

4. Simulation Studies

In this section, we demonstrate the improved frequentist performance of the test based on wn over the test
based on w∗n using simulations. We consider only cases where wn is defined. Shen (2000) shows that tests
based on w∗n when wn is undefined have good frequentist properties.

For a sample size s = 1000, the complete data {Y0, . . . , Y20} are simulated from independent nor-
mal distributions with E(Yi) = 0 for all i, V (Y0) = 1 and V (Yi) = 2 for i > 0. For computational
simplicity, missingness is simulated by letting Y (A)

mis be the first 20% of Y0 and Y (B)
mis be the last 30% of

Y1, . . . , Y20. The partially completed datasets D(i)
pcom, i = 1, . . . ,m, are generated by drawing values from

f(Y0|Dobs) using a multivariate normal distribution with an unrestricted covariance matrix. The completed
datasets,

{
D

(i,j)
com : i = 1, . . . ,m; j = 1, . . . , n

}
are generated from f(Y1, . . . , Y20|D(i)

pcom), which is a con-
ditional multivariate normal distribution. The number of imputations is varied, with m ∈ (2, 5, 10, 20) and
n ∈ (2, 5, 10, 20).
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The hypothesis tested is H0 : Q = 0, where Q is the vector of coefficients for the regression of Y0

on Y1, . . . , Yk, excluding the intercept, for k ∈ (5, 10, 20). As this null hypothesis is true in the simulated
data, the nominal rejection rate is expected to be close to 100α%, for a given significance level α. Table
1 compares the simulated nominal significance levels for 1000 iterations using each combination of m, n,
and k, for α ∈ (.01, .05, .10) using denominator degrees of freedom wn and w∗n. The simulated significance
levels using wn are seen to be generally closer to the expected significance levels than when w∗n is used.

The simulations suggest that the proposed test has appropriate rejection rates when the null hypothesis
is true. To get a sense of the power properties, we can turn to the results of Li et al. (1991b) and Shen
(2000). These tests are derived from similar assumptions and approximations as the test proposed here.
Based on extensive simulation studies, Li et al. (1991b) report that power curves for their tests are similar to
the power curves for Wald-type tests based on the observed data. The greatest losses in power occur when
the data deviate substantially from the proportionality assumption. The losses are largest when m is small,
and mostly disappear for large m. Shen (2000) reported similar findings, with greatest power loss for small
m and n and for large deviations from proportionality. The alternative test proposed here is expected to have
similar properties.

The robustness of the test to violations of the proportionality assumptions has been demonstrated for
single-stage multiple imputation for missing data in one stage by Li et al. (1991a) and for two-stage multiple
imputation by Shen (2000). Similar robustness is expected for the alternate reference distribution proposed
here.

5. Rates of missing information

Estimates of the fraction of missing information about Q are useful diagnostic tools for assessing how
missing data contribute to inferential uncertainty about Q (Schafer, 1997, p. 110). Rubin (1987) addressed
estimation of rates of missing information for scalar estimands with single-stage multiple imputation and
Harel (2003) addressed asymptotic rates for two-stage multiple imputation. In this section, estimates for
single-stage imputation from Rubin (1987) for a finite or infinite number of imputations are reviewed and
extended to multivariate estimands, and then further extended to two-stage multiple imputation. Estimates of
the rate of missing information in the first stage, the rate of missing information in the second stage, and the
overall rate of missing information are given.

Let the subscript scom denote quantities derived from Dscom, a set of completed datasets for Dobs im-
puted in a single stage, assuming that Y (B)

mis is observed, so that the rules of Rubin (1987) apply. When
m→∞, the Fisher information observed for a scalar estimand q is defined to be (ū∞+ b∞)−1, and the total
information that would be present if Y (A)

mis were also observed is ū−1
∞ ; hence the rate of missing information

is

γ(A) = {ū−1
∞ − (ū∞ + b∞)−1}/ū−1

∞ = b∞(ū∞ + b∞)−1 (5.1)

which can be estimated from Dscom as γ̂(A) = bscom/(ūscom + bscom). Using the posterior distribution
(q|Dscom) ∼ tνm

(q̄scom, Tscom = ūscom + (1 + 1/m)bscom), the total information about q obtained from
Dscom when m is finite is given by (νm + 1)(νm + 3)−1T−1

scom, hence γ(A) is estimated by

γ̂(A) = {ū−1
scom − (νm + 1)(νm + 3)−1T−1

scom}/ū−1
scom (5.2)

where νm = (m − 1)(1 + 1/rm)2 and rm = (1 + 1/m)bscom/ūscom. The expression in (5.2) can also be
written as

γ̂(A) =
rm + 2/(νm + 3)

1 + rm
. (5.3)
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Table 1. Simulated rejection rates for proposed test using wn and existing test using w∗n
wn (proposed) w∗

n (existing)
k = 5 k = 10 k = 20 k = 5 k = 10 k = 20

α = 0.01

m = 2
n = 2 0.004 0.010 0.009 0.004 0.000 0.000
n = 5 0.002 0.009 0.006 0.003 0.003 0.000
n = 10 0.002 0.012 0.010 0.004 0.003 0.000
n = 20 0.003 0.011 0.010 0.006 0.003 0.000

m = 5
n = 2 0.010 0.012 0.015 0.004 0.001 0.000
n = 5 0.010 0.011 0.014 0.003 0.001 0.000
n = 10 0.009 0.012 0.013 0.002 0.001 0.000
n = 20 0.009 0.011 0.015 0.005 0.001 0.000

m = 10
n = 2 0.007 0.010 0.014 0.005 0.004 0.001
n = 5 0.007 0.010 0.014 0.005 0.006 0.001
n = 10 0.006 0.011 0.013 0.003 0.006 0.001

α = 0.05

m = 2
n = 2 0.014 0.041 0.049 0.019 0.005 0.000
n = 5 0.019 0.051 0.057 0.024 0.010 0.001
n = 10 0.019 0.046 0.065 0.028 0.013 0.001
n = 20 0.020 0.046 0.062 0.025 0.014 0.001

m = 5
n = 2 0.053 0.060 0.063 0.023 0.014 0.004
n = 5 0.049 0.056 0.072 0.026 0.020 0.010
n = 10 0.050 0.059 0.070 0.029 0.021 0.013
n = 20 0.052 0.056 0.064 0.030 0.022 0.013

m = 10
n = 2 0.060 0.049 0.069 0.042 0.028 0.023
n = 5 0.057 0.049 0.074 0.040 0.035 0.030
n = 10 0.056 0.053 0.073 0.043 0.037 0.032

α = 0.10

m = 2
n = 2 0.057 0.091 0.111 0.051 0.014 0.001
n = 5 0.055 0.103 0.116 0.051 0.026 0.002
n = 10 0.051 0.110 0.114 0.046 0.026 0.004
n = 20 0.048 0.110 0.114 0.046 0.027 0.003

m = 5
n = 2 0.106 0.127 0.131 0.070 0.053 0.027
n = 5 0.107 0.123 0.138 0.076 0.059 0.036
n = 10 0.109 0.127 0.143 0.077 0.057 0.037
n = 20 0.106 0.128 0.136 0.079 0.062 0.039

m = 10
n = 2 0.099 0.123 0.126 0.091 0.077 0.065
n = 5 0.110 0.124 0.130 0.092 0.083 0.080
n = 10 0.107 0.118 0.128 0.095 0.088 0.081
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For multivariate estimands, the posterior of Q generalizes to a multivariate t-distribution, where component
ql of Q has posterior tνm(q̄l, Tl), q̄l is the lth component of Q̄scom and Tl is the lth diagonal element of
Tscom. The degrees of freedom ν

(l)
m for the lth component are (m − 1)(1 + 1/r(l)

m )2, where r(l)
m = (1 +

1/m)b(l)scom/ū
(l)
scom. As the degrees of freedom ν

(l)
m are the same for each component, we can obtained an

improved estimate of νm by averaging the r(l)
m across components, yielding

rm = (1 + 1/m)/k
k∑
l=1

b(l)scom/ū
(l)
scom = (1 + 1/m)tr(BscomŪ−1

scom)/k. (5.4)

Similarly, under the proportionality assumptions of (3.3), γ(A) is the same across components, and hence,
to estimate γ(A) for multivariate Q, we average the information in Q across components and use (5.3) to
estimate γ(A), with rm as defined in (5.4).

With two-stage imputation, Dscom is not available, so an estimate of γ(A) using Dcom is needed. To
estimate γ(A) for Q, note that when using Dscom, Bscom is an unbiased estimate of B∞, while when using
Dcom, B provides an unbiased estimate of B∞ + W̄∞/n, and W̄ is an unbiased estimate of W̄∞. Thus B∞
is estimated by B − W̄/n and γ̂(A) = (B − W̄/n)/(Ū +B − W̄/n). To estimate γ(A) taking into account
the finite number of imputations fromDcom, we use (5.3), replacing rm with (1+1/m)tr((B−W̄/n)Ū−1).

The total fraction of missing information for Q due to both Y (A)
mis and Y (B)

mis when m → ∞ and n → ∞
is determined similar to (5.2) as γtot = (B∞ + W̄∞)(Ū∞ + B∞ + W̄∞)−1. Since B∞ is estimated by
B − W̄/n, an estimate of this fraction is given by γ̂tot = (B + (1 − 1/n)W̄ )/(Ū + B + (1 − 1/n)W̄ ).
To estimate γtot when m is finite, note the combining rule for scalar q (Shen, 2000) gives the posterior
distribution (q|Dcom) ∼ tνn(q̄, Tn = ū+ (1 + 1/m)b+ (1− 1/n)w̄), where

νn =

{
(r(b)
n )2

(1 + r
(b)
n + r

(w)
n )2

+
(r(w)
n )2

(1 + r
(b)
n + r

(w)
n )2

}
, (5.5)

and r(b)
n and r(w)

n are as defined in (2.6) and (2.7) with k = 1. Thus the total information about q in Dcom

is given by (νn + 1)(νn + 3)−1T−1
n , yielding γ̂tot = {ū−1 − (νn + 1)(νn + 3)−1T−1

n }/ū−1, which is also
written as

γ̂tot =
2/(νn + 3) + r

(b)
n + r

(w)
n

1 + r
(b)
n + r

(w)
n

. (5.6)

The assumption of equal fractions of missing information across components in each stage of imputation
implies equal fractions of total missing information. Thus, similar to the estimation of γ(A) for multivariate
Q, we average across components to generalize (5.6) to the multivariate case, using r(b)

n and r(w)
n as defined

in (2.6) and (2.7).
An estimate of the fraction of missing information due to Y (B)

mis if Y (A)
mis were known, assuming an infinite

number of imputations, is given by γ(B) = W̄∞/(Ū∞ + W̄∞). Since W̄∞ is estimated by W̄ , an estimate of
this fraction is given by γ̂(B) = W̄/(Ū + W̄ ). As the denominators of all the rates of missing information
considered here are the same, and equal to the total information about Q in the posterior distribution had all
the data been observed, Ū−1

∞ or Ū−1, estimation of γ(B) with finite m can be accomplished by subtraction:
γ̂(B) = γ̂tot − γ̂(A).
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