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Abstract

Several statistical agencies use, or are considering the use of, multiple imputation to limit the risk of

disclosing respondents’ identities or sensitive attributes in public use data files. For example, agencies can

release partially synthetic datasets, comprising the units originally surveyed with some collected values,

such as sensitive values at high risk of disclosure or values of key identifiers, replaced with multiple

imputations. This article presents an approach for generating multiply-imputed, partially synthetic

datasets that simultaneously handles disclosure limitation and missing data. The basic idea is to fill in

the missing data first to generate m completed datasets, then replace sensitive or identifying values in

each completed dataset with r imputed values. This article also develops methods for obtaining valid

inferences from such multiply-imputed datasets. New rules for combining the multiple point and variance

estimates are needed because the double duty of multiple imputation introduces two sources of variability

into point estimates, which existing methods for obtaining inferences from multiply-imputed datasets do

not measure accurately. A reference t-distribution appropriate for inferences when m and r are moderate

is derived using moment matching and Taylor series approximations.
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1 Introduction

Many statistical agencies disseminate microdata, i.e. data on individual units, in public use files. These

agencies strive to release files that are (i) safe from attacks by ill-intentioned data users seeking to learn

respondents’ identities or attributes, (ii) informative for a wide range of statistical analyses, and (iii) easy

for users to analyze with standard statistical methods. Doing this well is a difficult task. The proliferation of

publicly available databases, and improvements in record linkage technologies, have made disclosures a serious

threat, to the point where most statistical agencies alter microdata before release. For example, agencies

globally recode variables, such as releasing ages in five year intervals or top-coding incomes above $100,000

as “$100,000 or more” (Willenborg and de Waal, 2001); they swap data values for randomly selected units

(Dalenius and Reiss, 1982); or, they add random noise to continuous data values (Fuller, 1993). Inevitably,

these strategies reduce the utility of the released data, making some analyses impossible and distorting the

results of others. They also complicate analyses for users. To analyze properly perturbed data, users should

apply the likelihood-based methods described by Little (1993) or the measurement error models described

by Fuller (1993). These are difficult to use for non-standard estimands and may require analysts to learn

new statistical methods and specialized software programs.

An alternative approach to disseminating public use data was suggested by Rubin (1993): release

multiply-imputed, synthetic datasets. Specifically, he proposed that agencies (i) randomly and indepen-

dently sample units from the sampling frame to comprise each synthetic data set, (ii) impute unknown data

values for units in the synthetic samples using models fit with the original survey data, and (iii) release

multiple versions of these datasets to the public. These are called fully synthetic data sets. Releasing fully

synthetic data can protect confidentiality, since identification of units and their sensitive data is nearly im-

possible when the values in the released data are not actual, collected values. Furthermore, with appropriate

synthetic data generation and the inferential methods developed by Raghunathan et al. (2003) and Reiter

(2004b), it can allow data users to make valid inferences for a variety of estimands using standard, complete-
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data statistical methods and software. Other attractive features of fully synthetic data are described by

Rubin (1993), Little (1993), Fienberg et al. (1998), Raghunathan et al. (2003), and Reiter (2002, 2004a).

No statistical agencies have released fully synthetic datasets as of this writing, but some have adopted

a variant of the multiple imputation approach suggested by Little (1993): release datasets comprising the

units originally surveyed with some collected values, such as sensitive values at high risk of disclosure or

values of key identifiers, replaced with multiple imputations. These are called partially synthetic datasets.

For example, the U.S. Federal Reserve Board protects data in the U.S. Survey of Consumer Finances by

replacing monetary values at high disclosure risk with multiple imputations, releasing a mixture of these

imputed values and the unreplaced, collected values (Kennickell, 1997). The U.S. Bureau of the Census and

Abowd and Woodcock (2001) protect data in longitudinal, linked data sets by replacing all values of some

sensitive variables with multiple imputations and leaving other variables at their actual values. Liu and

Little (2002) present a general algorithm, named SMIKe, for simulating multiple values of key identifiers for

selected units.

All these partially synthetic approaches are appealing because they promise to maintain the primary

benefits of fully synthetic data–protecting confidentiality while allowing users to make inferences without

learning complicated statistical methods or software–with decreased sensitivity to the specification of impu-

tation models (Reiter, 2003). Valid inferences from partially synthetic datasets can be obtained using the

methods developed by Reiter (2003, 2004b), whose rules for combining point and variance estimates again

differ from those of Rubin (1987) and also from those of Raghunathan et al. (2003).

The existing theory and methods for partially synthetic data do not deal explicitly with an important

practical complication: in most large surveys, there are units that fail to respond to some or all items of the

survey. This article presents a multiple imputation approach that handles simultaneously missing data and

disclosure limitation. The approach involves two steps. First, the agency uses multiple imputation to fill in

the missing data, generating m multiply-imputed datasets. Second, the agency replaces the values at risk of
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disclosure in each imputed dataset with r multiple imputations, ultimately releasing m ∗ r multiply-imputed

datasets. This double-duty of multiple imputation requires new methods for obtaining valid inferences from

the multiply-imputed datasets, which are derived here.

The paper is organized as follows. Section 2 reviews multiple imputation for missing and partially

synthetic data. Section 3 presents the new methods for generating partially synthetic data and obtaining

valid inferences when some survey data are missing. Section 4 shows a derivation of these methods from a

Bayesian perspective, and it discusses conditions under which the resulting inferences should be valid from a

frequentist perspective. Section 5 concludes with a discussion of the challenges to implementing this multiple

imputation approach on genuine data, with an aim towards stimulating future research.

2 Review of multiple imputation inferences

To describe multiple imputation, we use the notation of Rubin (1987). For a finite population of size N , let

Ij = 1 if unit j is selected in the survey, and Ij = 0 otherwise, where j = 1, 2, . . . , N . Let I = (I1, . . . , IN ).

Let Rj be a p × 1 vector of response indicators, where Rjk = 1 if the response for unit j to survey item k

is recorded, and Rjk = 0 otherwise. Let R = (R1, . . . , RN ). Let Y be the N × p matrix of survey data for

all units in the population. Let Yinc = (Yobs, Ymis) be the n × p matrix of survey data for the n units with

Ij = 1; Yobs is the portion of Yinc that is observed, and Ymis is the portion of Yinc that is missing due to

nonresponse. Let X be the N ×d matrix of design variables for all N units in the population, e.g. stratum or

cluster indicators or size measures. We assume that such design information is known approximately for all

population units, for example from census records or the sampling frame(s). Finally, we write the observed

data as D = (X, Yobs, I, R).
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2.1 Multiple imputation for missing data

The agency fills in values for Ymis with draws from the Bayesian posterior predictive distribution of (Ymis |

D), or approximations of that distribution such as those of Raghunathan et al. (2001). These draws are

repeated independently l = 1, . . . , m times to obtain m completed data sets, D(l) = (D, Y
(l)
mis). Multiple

rather than single imputations are used so that analysts can estimate the variability due to imputing missing

data.

In each imputed data set D(l), the analyst estimates the population quantity of interest, Q, using some

estimator q, and estimates the variance of q with some estimator u. We assume that the analyst specifies

q and u by acting as if each D(l) was in fact collected data from a random sample of (X, Y ) based on the

original sampling design I , i.e., q and u are complete-data estimators.

For l = 1, . . . , m, let q(l) and u(l) be respectively the values of q and u in data set D(l). Under assumptions

described in Rubin (1987), the analyst can obtain valid inferences for scalar Q by combining the q(l) and

u(l). Specifically, the following quantities are needed for inferences:

q̄m =

m
∑

l=1

q(l)/m (1)

bm =
m

∑

l=1

(q(l) − q̄m)2/(m − 1) (2)

ūm =

m
∑

l=1

u(l)/m. (3)

The analyst then can use q̄m to estimate Q and Tm = (1 + 1/m)bm + ūm to estimate the variance of q̄m.

Inferences can be based on t-distributions with degrees of freedom νm = (m − 1)(1 + ūm/((1 + 1/m)bm))2.
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2.2 Multiple imputation for partially synthetic data when Yinc = Yobs

Assuming no missing data, i.e., Yinc = Yobs, the agency constructs partially synthetic datasets by replacing

selected values from the observed data with imputations. Let Zj = 1 if unit j is selected to have any of its

observed data replaced with synthetic values, and let Zj = 0 for those units with all data left unchanged. Let

Z = (Z1, . . . , Zn). Let Yrep,i be all the imputed (replaced) values in the ith synthetic data set, and let Ynrep

be all unchanged (unreplaced) values of Yobs. The Yrep,i are assumed to be generated from the posterior

predictive distribution of (Yrep,i | D, Z), or a close approximation of it. The values in Ynrep are the same in

all synthetic data sets. Each synthetic data set, di, then comprises (X, Yrep,i, Ynrep, I, Z). Imputations are

made independently i = 1, . . . , r times to yield r different partially synthetic data sets, which are released to

the public. Once again, multiple imputations enable analysts to account for variability due to imputation.

The values in Z can and frequently will depend on the values in D. For example, the agency may simulate

sensitive variables or identifiers only for units in the sample with rare combinations of identifiers; or, the

imputer may replace only incomes above $100,000 with imputed values. To avoid bias, the imputations

should be drawn from the posterior predictive distribution of Y for those units with Zj = 1. Reiter (2003)

illustrates the problems that can arise when imputations are not conditional on Z.

Inferences from partially synthetic datasets are based on quantities defined in Equations (1)-(3). As

shown by Reiter (2003), under certain conditions the analyst can use q̄r to estimate Q and Tp = br/r + ūr to

estimate the variance of q̄r. Inferences for scalar Q can be based on t-distributions with degrees of freedom

νp = (r − 1)(1 + ūr/(br/r))2.

3 Partially synthetic data when Yinc 6= Yobs

When some data are missing, it seems logical to impute the missing and partially synthetic data simul-

taneously. However, imputing Ymis and Yrep from the same posterior predictive distribution can result in
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improper imputations. For an illustrative example, suppose univariate data from a normal distribution have

some values missing completely at random (Rubin, 1976). Further, suppose the agency seeks to replace all

values larger than some threshhold with imputations. The imputations for missing data can be based on

a normal distribution fit using all of Yobs. However, the imputations for replacements must be based on a

posterior distribution that conditions on values being larger than the threshhold. Drawing Ymis and Yrep

from the same distribution will result in biased inferences.

Imputing the Ymis and Yrep separately generates two sources of variability, in addition to the sampling

variability in D, that the user must account for to obtain valid inferences. Neither Tm nor Tp correctly

estimate the total variation introduced by the dual use of multiple imputation. The bias of each can be

illustrated with two simple examples. Suppose only one value needs replacement, but there are hundreds

of missing values to be imputed. Intuitively, the variance of the point estimator of Q should be well ap-

proximated by Tm, and Tp should underestimate the variance, as it is missing a bm. On the other hand,

suppose only one value is missing, but there are hundreds of values to be replaced. The variance should be

well approximated by Tp, and Tm should overestimate the variance, as it includes an extra bm.

To allow users to estimate the total variability correctly, agencies can employ a three-step procedure

for generating imputations. First, the agency fills in Ymis with draws from the posterior distribution for

(Ymis | D), resulting in m completed datasets, D(1), . . . , D(m). Then, in each D(l), the agency selects the

units whose values are to be replaced, i.e. whose Z
(l)
j = 1. In many cases, the agency will impute values for

the same units in all D(l) to avoid releasing any genuine, sensitive values for the selected units. We assume

this is the case throughout and therefore drop the superscript l from Z. Third, in each D(l), the agency

imputes values Y
(l)
rep,i for those units with Zj = 1, using the posterior distribution for (Yrep | D(l), Z). This is

repeated independently i = 1, . . . , r times for l = 1, . . . , m, so that a total of M = mr datasets are generated.

Each dataset, d
(l)
i = (X, Ynrep, Y

(l)
mis, Y

(l)
rep,i, I, R, Z), includes a label indicating the l of the D(l) from which it

was drawn. These M datasets are released to the public. Releasing such nested, multiply-imputed datasets
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also has been proposed for handling missing data outside of the disclosure limitation context (Shen, 2000;

Rubin, 2003).

Analysts can obtain valid inferences from these released datasets by combining inferences from the indi-

vidual datasets. As before, let q be the analyst’s estimator of Q, and let u be the analyst’s estimator of the

variance of q. We assume the analyst specifies q and u by acting as if each d
(l)
i was in fact collected data

from a random sample of (X, Y ) based on the original sampling design I . For l = 1, . . . , m and i = 1, . . . , r,

let q
(l)
i and u

(l)
i be respectively the values of q and u in data set d

(l)
i . The following quantities are needed for

inferences about scalar Q:

q̄M =

m
∑

l=1

r
∑

i=1

q
(l)
i /(mr) =

m
∑

l=1

q̄(l)/m (4)

b̄M =

m
∑

l=1

r
∑

i=1

(q
(l)
i − q̄(l))2/m(r − 1) =

m
∑

l=1

b(l)/m (5)

BM =

m
∑

l=1

(q̄(l) − q̄M )2/(m − 1) (6)

ūM =

m
∑

l=1

r
∑

i=1

u
(l)
i /(mr). (7)

The q̄(l) is the average of the point estimates in each group of datasets indexed by l, and the q̄M is the

average of these averages across l. The b(l) is the variance of the point estimates for each group of datasets

indexed by l, and the b̄M is average of these variances. The BM is the variance of the q̄(l) across synthetic

datasets. The ūM is the average of the estimated variances of q across all synthetic datasets.

Under conditions described in Section 4, the analyst can use q̄M to estimate Q. An estimate of the

variance of q̄M is:

TM = (1 + 1/m)BM − b̄M/r + ūM . (8)

When n, m, and r are large, inferences can be based on the normal distribution, (Q − q̄M ) ∼ N(0, TM ).
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When m and r are moderate, inferences can be based on the t-distribution, (Q − q̄M ) ∼ tνM
(0, TM ), with

degrees of freedom

νM =

(

((1 + 1/m)BM )2

(m − 1)T 2
M

+
(b̄M/r)2

m(r − 1)T 2
M

)−1

. (9)

The behavior of TM and νM in special cases is instructive. When r is very large, TM ≈ Tm. This is

because the q̄(l) ≈ q(l), so that we obtain the results from analyzing the D(l). When the fraction of replaced

values is small relative to the fraction of missing values, the b̄M is small relative to BM , so that once again

TM ≈ Tm. In both these cases, the νM approximately equals νm, which is Rubin’s (1987) degrees of freedom

when imputing missing data only. When the fraction of missing values is small relative to the fraction of

replaced values, the BM ≈ b̄M/r, so that TM is approximately equal to Tp with M released datasets.

4 Justification of new combining rules

This section presents a Bayesian derivation of the inferences described in Section 3 and describes conditions

under which these inferences are valid from a frequentist perspective. These results make use of the theory

developed in Rubin (1987) and Reiter (2003). For the Bayesian derivation, we assume that the analyst and

imputer use the same models.

Let Dm = {D(l) : l = 1, . . . , m} be the collection of all multiply-imputed datasets before any observed

values are replaced. For each D(l), let q(l) and u(l) be the posterior mean and variance of Q. As in Rubin

(1987, Chapter 3), let B∞ be the variance of the q(l) obtained when m = ∞.

Let dM = {d
(l)
i : i = 1, . . . , r and l = 1, . . . , m} be the collection of all released synthetic datasets. For

each d
(l)
i , let q

(l)
i be the posterior mean of q(l). For each l, let B(l) be the variance of the q

(l)
i obtained when

r = ∞. Lastly, let B be the average of the B(l) obtained when m = ∞.
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Using these quantities, the posterior distribution for (Q | dM ) can be decomposed as

f(Q | dM ) =

∫

f(Q | dM , Dm, B∞, B)f(Dm, B∞ | dM , B)f(B | dM )dDm dB∞ dB (10)

The integration is over the distributions of the values in D that are missing and the values in each D(l) that

are replaced with imputations; the observed, unaltered values remain fixed. We assume standard Bayesian

asymptotics hold, so that complete-data inferences for Q can be based on normal distributions.

4.1 Evaluating f(Q | dM , Dm, B∞, B)

Given Dm, the synthetic data are irrelevant, so that f(Q | dM , Dm, B∞, B) = f(Q | Dm, B∞). This is the

posterior distribution of Q for multiple imputation for missing data, conditional on B∞. As shown by Rubin

(1987), this posterior distribution is approximately

(Q | Dm, B∞) ∼ N(q̄m, (1 + 1/m)B∞ + ūm) (11)

where q̄m and ūm are defined as in (1) and (3). In multiple imputation for missing data, we integrate (11)

over the posterior distribution of (B∞ | Dm). This is not done here, since we integrate over (B∞ | dM ).

4.2 Evaluating f(Dm, B∞ | dM , B)f(B | dM)

Since the distribution for Q in (11) relies only on q̄m, ūm, and B∞, it is sufficient for f(Dm, B∞ | dM , B) to

determine f(q̄m, ūm, B∞ | dM , B) = f(q̄m, ūm | dM , B∞, B)f(B∞ | dM , B).

Following Reiter (2003), we first assume replacement imputations are made so that, for all i, the sampling
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distributions of each q
(l)
i and u

(l)
i are,

(q
(l)
i | D(l), B(l)) ∼ N(q(l), B(l)) (12)

(u
(l)
i | D(l), B(l)) ∼ (u(l), << B(l)). (13)

Here, the notation F ∼ (G, << H) means that the random variable F has a distribution with expectation of

G and variability much less than H . In actuality, u
(l)
i is typically centered at a value larger than u(l), since

synthetic data incorporate uncertainty due to drawing values of the parameters. For large sample sizes n,

this bias should be minimal. The assumption that E(q
(l)
i | D(l), B(l)) = q(l) and the normality assumption

should be reasonable when the imputations are drawn from correct posterior predictive distributions, f(Yrep |

D(l), Z), and the usual asymptotics hold.

Assuming flat priors for all q(l) and v(l), standard Bayesian theory implies that

(q(l) | dM , B(l)) ∼ N(q̄(l), B(l)/r) (14)

(u(l) | dM , B(l)) ∼ (ū(l), << B(l)/r) (15)

(

(r − 1)b(l)

B(l)
| dM , B(l)

)

∼ χ2
r−1 (16)

where b(l) is defined in (5). We next assume that B(l) = B for all l. This should be reasonable, since

the variability in posterior variances tends to be of smaller order than the variability of posterior means.

Averaging across l, we obtain

(q̄m | dM , B) ∼ N(q̄M , B/rm) (17)

(ūm | dM , B) ∼ (ūM , << B/rm) (18)
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where q̄M is defined in (4) and ūM is defined in (7). The posterior distribution of (B∞ | dM , B) is

(

(m − 1)BM

B∞ + B/r
| dM , B

)

∼ χ2
m−1 (19)

where BM is defined in (6).

Finally, the posterior distribution of (B | dM ) is

(

m(r − 1)b̄M

B
| dM

)

∼ χ2
m(r−1) (20)

where b̄M is defined in (5).

4.3 Evaluating f(Q | dM)

We need to integrate the product of (11) and (17) with respect to the distributions in (19) and (20). This

can be done by numerical integration, but it is desirable to have simpler approximations for users.

For large m and r, we can replace the terms in the variance with their approximate expectations: the

B∞ ≈ BM−B/r, and the B ≈ b̄M . Hence, for large m and r, the posterior distribution of Q is approximately:

(Q | dM ) ∼ N(q̄M , (1 + 1/m)(BM − b̄M/r) + b̄M/mr + ūM )

= N(q̄M , (1 + 1/m)BM − b̄M/r + ūM ) = N(q̄M , TM ). (21)

When m and r are moderately sized, the normal distribution may not be a good approximation. To

derive an approximate reference t-distribution, we use the strategies of Rubin (1987) and Barnard and

Rubin (1999). That is, we assume that for some degrees of freedom νM to be estimated,

(

νMTM

ūM + (1 + 1/m)B∞ + B/mr
| dM

)

∼ χ2
νM

(22)
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so that we can use a t-distribution with νM degrees of freedom for inferences about Q. We approximate νM

by matching the first two moments of (22) to those of a chi-squared distribution. The details showing that

νM is approximated by the expression in (9) are provided in the appendix.

The inferences based on (4) - (9) have valid frequentist properties under certain conditions. First, the

analyst must use randomization-valid estimators, q and u. That is, when q and u are applied on D to get

qobs and uobs, the (qobs | X, Y ) ∼ N(Q, U) and (uobs | X, Y ) ∼ (U, << U), where the relevant distribution

is that of I . Second, the imputations for missing data must be proper in the sense of Rubin (1987, Chapter

4). Essentially, this requires that inferences from the imputations for missing data be randomization-valid

for qobs and uobs, under the posited non-response mechanism. Third, the imputations for partially synthetic

data must be synthetically proper in the sense of Reiter (2003). This requires that the inferences from the

replacement imputations associated with each D(l) be randomization valid for the q(l) and u(l).

In general, it is difficult to verify that imputations for missing data are proper in complex samples (Binder

and Sun, 1996). They may be proper for some analyses but not for others. As a result, some confidence

intervals centered on unbiased estimators may not have nominal coverage rates; see Meng (1994) for a

discussion of this issue. These difficulties exist for the multiple imputation approach used here, and indeed

may be compounded because of the additional imputation of synthetic data.

5 Concluding Remarks

There are many challenges to using partially synthetic data approaches for disclosure limitation. Most im-

portant, agencies must decide which values to replace with imputations. General candidates for replacement

include the values of identifying characteristics for units that are at high risk of identification, such as sample

uniques and duplicates, and the values of sensitive variables in the tails of distributions. Confidentiality can

be protected further by, in addition, replacing values at low disclosure risk (Liu and Little, 2002). This in-

creases the variation in the replacement imputations, and it obscures any information that can be gained just
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from knowing which data were replaced. As with any disclosure limitation method (Duncan et al., 2001),

these decisions should consider tradeoffs between disclosure risk and data utility. Guidance on selecting

values for replacement is a high priority for research in this area.

There remain disclosure risks in partially synthetic data no matter which values are replaced. Users can

utilize the released, unaltered values to facilitate disclosure attacks, for example via matching to external

databases, or they may be able to estimate actual values of Yobs from the synthetic data with reasonable

accuracy. For instance, if all people in a certain demographic group have the same, or even nearly the same,

value of an outcome variable, the imputation models likely will generate that value for imputations. Imputers

may need to coarsen the imputations for such people. As another example, when users know that a certain

record has the largest value of some Yobs, that record can be identified when its value is not replaced.

On the data utility side, the main challenge is specifying imputation models, both for the missing and

replaced data, that give valid results. For missing data, it is well known that implausible imputation models

can produce invalid inferences, although this is less problematic when imputing relatively small fractions of

missing data (Rubin, 1987; Meng, 1994). There is an analogous issue for partially synthetic data. When

large fractions of data are replaced, for example entire variables, analyses involving the replaced values reflect

primarily the distributional assumptions implicit in the imputation models. When these assumptions are

implausible, the resulting analyses can be invalid. Again, this is less problematic when only small fractions

of values are replaced, as might be expected in many applications of the partially synthetic approach.

Certain data characteristics can be especially challenging to handle with partially synthetic data. For

example, it may be desirable to replace extreme values in skewed distributions, such as very large incomes.

Information about the tails of these distributions may be limited, making it difficult to draw reasonable

replacements while protecting confidentiality. As another example, randomly drawn imputations for highly

structured data may be implausible, for instance unlikely combinations of family members’ ages or marital

statuses. These difficulties, coupled with the general limitations of inferences based on imputations, point to
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an important issuse for research: developing and evaluating methods for generating partially synthetic data,

including semi-parametric and non-parametric approaches.

We note that building the synthetic data models is generally an easier task than building the missing

data models. Agencies can compare the distributions of the synthetic data to those of the observed data

being replaced. When the synthetic distributions are too dissimilar from the observed ones, the imputation

models can be adjusted. There usually is no such check for the missing data models.

It is, of course, impossible for agencies to anticipate every possible use of the released data, and hence

impossible to generate models that provide valid results for every analysis. A more modest and attainable

goal is to enable analysts to obtain valid inferences using standard methods and software for a wide range of

standard analyses, such as some linear and logistic regressions. Agencies therefore should provide information

that helps analysts decide what inferences can be supported by the released data. For example, agencies

can include descriptions of the imputation models as attachments to public releases of data. Users whose

analyses are not supported by the data may have to apply for special access to the observed data. Agencies

also need to provide documentation for how to use the nested data sets. Rules for combining point estimates

from the multiple data sets are simple enough to be added to standard statistical software packages, as has

been done already for Rubin’s (1987) rules in SAS, Stata, and S-Plus.

As constructed, the multiple imputation approach does not calibrate to published totals. This could

make some users unhappy with or distrust the released data. It is not clear how to adapt the method—or,

for that matter, many other disclosure limitation techniques that alter the original data—for calibration.

Missing data and disclosure risk are major issues confronting organizations releasing data to the public.

The multiple imputation approach presented here is suited to handle both simultaneously, providing users

with rectangular completed datasets that can be analyzed with standard statistical methods and software.

There are challenges to implementing this approach in genuine applications, but, as noted by Rubin (1993)

in his initial proposal, the potential payoffs of this use of multiple imputation are high. The next item on
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the research agenda is to investigate how well the theory works in practice, including comparisons of this

approach with other dislosure limitation methods. These comparisons should focus on measures of disclosure

risks, obtained by simulating intruder behavior, and on measures of data utility for estimands of interest to

users, including properties of point and interval estimates.

Appendix: Derivation of Approximate Degrees of Freedom

Inferences from datasets with multiple imputations for both missing data and partially synthetic replacements

are made using a t-distribution. A key step is to approximate the distribution of

(

νMTM

ūM + (1 + 1/m)B∞ + B/mr
| dM

)

(23)

as a chi-squared distribution with νM degrees of freedom. The νM is determined by matching the mean and

variance of the inverted χ2 distribution to the mean and variance of (23).

Let α = (B∞ + B/r)/BM , and let γ = B/b̄M . Then, (α−1 | dM , B) and (γ−1 | dM ) have mean square

distributions with degrees of freedom m − 1 and m(r − 1), respectively. Let f = (1 + 1/m)BM/ūM , and let

g = (1/r)b̄M/ūM . We can write (23) as

TM

ūM + (1 + 1/m)B∞ + B/mr
=

ūM (1 + f − g)

ūM (1 + αf − γg)
. (24)

To match moments, we need to approximate the expectation and variance of (24).

For the expectation, we use the fact that

E

(

1 + f − g

1 + αf − γg
| dM

)

= E

(

E

(

1 + f − g

1 + αf − γg
| dM , B

)

| dM

)

. (25)

We approximate these expectations using first order Taylor series expansion in α−1 and γ−1 around their
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expectations, which equal one. As a result,

E

(

E

(

1 + f − g

1 + αf − γg
| dM , B

)

| dM

)

≈ E

(

1 + f − g

1 + f − γg
| dM

)

≈ 1. (26)

For the variance, we use the conditional variance representation

E

(

V ar

(

1 + f − g

1 + αf − γg
| dM , B

)

| dM

)

+ V ar

(

E

(

1 + f − g

1 + αf − γg
| dM , B

)

| dM

)

. (27)

For the interior variance and expectation, we use a first order Taylor series expansion in α−1 around its

expectation. Since V ar(α−1 | dM , B) = 2/(m − 1), the expression in (27) equals approximately

E

(

2(1 + f − g)2 f2

(m − 1)(1 + f − γg)4
| dM

)

+ V ar

(

1 + f − g

1 + f − γg
| dM

)

. (28)

We now use first order Taylor series expansions in γ−1 around its expectation to determine the components

of (28). The first term in (28) is,

E

(

2(1 + f − g)2 f2

(m − 1)(1 + f − γg)4
| dM

)

≈
2f2

(m − 1)(1 + f − g)2
. (29)

Since V ar(γ−1 | dM ) = 2/(m(r − 1)), the second term in (28) is

V ar

(

1 + f − g

1 + f − γg
| dM

)

≈
2g2

m(r − 1)(1 + f − g)2
. (30)

Combining (29) and (30), the variance of (23) equals approximately

2f2

(m − 1)(1 + f − g)2
+

2g2

m(r − 1)(1 + f − g)2
. (31)
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Since a mean square random variable has variance equal to 2 divided by its degrees of freedom, we conclude

that

νM =

(

f2

(m − 1)(1 + f − g)2
+

g2

m(r − 1)(1 + f − g)2

)−1

. (32)
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