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Abstract

Within causal inference, principal stratification (PS) is a popular approach for
dealing with intermediate variables, i.e., variables affected by treatment that also po-
tentially affect the response. However, when there exists unmeasured confounding in
the treatment arms—as can happen in observational studies—causal estimands result-
ing from PS analyses can be biased. We identify the various pathways of confounding
present in PS contexts and their effects for PS inference. We present model-based
approaches for assessing the sensitivity of complier average causal effect estimates to
unmeasured confounding in the setting of binary treatments, binary intermediate vari-
ables, and binary outcomes. These same approaches can be used to assess sensitivity
to unknown direct effects of treatments on outcomes since, as we show, direct effects
are operationally equivalent to one of the pathways of unmeasured confounding. We
illustrate the methodology using a randomized study with artificially introduced con-
founding and a sensitivity analysis for an observational study of the effects of physical
activity and body mass index on cardiovascular disease.

KEYWORDS: Causal; Intermediate; Principal stratification; Confounding; Observa-
tional; Sensitivity Analysis
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1 Introduction

Intermediate variables are post-treatment variables potentially affected by treatment and
affecting response. Regardless of whether the study design is randomized or observational,
intermediate variables are frequently present, e.g., in settings involving non-compliance, miss-
ing data, and surrogate endpoints. Under such circumstances, standard intention-to-treat
analyses may not be sufficient to estimate treatment efficacy, so that intermediate vari-
ables must be dealt with for causal inference. However, it is well documented that applying
standard methods of pre-treatment variable adjustment to intermediate variables, such as
regression or per-protocol analysis, can result in post-treatment selection bias, see e.g., [1].
To illustrate, let Yi(Zi) and Di(Zi) be respectively the potential outcomes [2] of the response
of interest and the intermediate variable for unit i under an assigned binary treatment,
Zi = 0, 1. In general, the comparison between {Yi(0) : Di(0) = d} and {Yi(1) : Di(1) = d}
for all i = 1, . . . , n units in the study is not a causal effect when Zi affects Di, because
{i : Di(0) = d} 6= {i : Di(1) = d}.

A principled approach to handling intermediate variables in causal inference is principal
stratification (PS), in which one compares {Yi(1) : Si = s} and {Yi(0) : Si = s} [3]. Here
Si = (Di(1), Di(0)) is called a principal stratum. The key insight is that Si is invariant under
treatment assignment, so that the principal strata may be used as pre-treatment variables.
That is, comparisons within Si = s, known as principal effects (PE), are well-defined causal
effects. Specifically, PEs in strata {Si : Di(0) = Di(1)} can be interpreted as direct effects
of treatment on response, while PEs in strata {Si : Di(0) 6= Di(1)} can be interpreted as
the effects of treatment mediated through the intermediate variable response plus any direct
effects of treatment on response [4].

Since S are not fully observed, the identifiability of PEs usually relies on a set of structural
assumptions, e.g., no unmeasured confounding and an exclusion restriction (ER) (see Section
2). These assumptions may not be true, particularly in observational studies. For example,
consider the Swedish March National Cohort (NMC) analyzed by Sjölander et al. [5] and
by us in Section 5. Here, Z is one’s physical activity (PA) level, D is one’s body mass index
(BMI), and Y is the event of cardiovascular disease (CVD). Interest lies in the roles of PA
and BMI in influencing CVD risk. It is known that BMI is directly affected by PA and
obesity is highly correlated with CVD risk, making BMI a possible intermediate variable
on the causal pathway between PA and CVD. However, the treatment variable PA is self-
selected by participants, and this selection could be confounded with other healthy lifestyle
practices that are not observed in the data. Furthermore, PA could improve CVD outcomes
directly, which would violate the ER.

When identifying assumptions are suspect, it is prudent to examine the sensitivity of
results to violations of them [6]. For example, analysts can remove identifying assumptions
to derive bounds for PS estimands [7, 8]. Alternatively, analysts can encode identifying
assumptions as sensitivity parameters that are included in models for causal effects [5, 9].
To do so, expert opinion can be used to specify plausible values of the sensitivity parameters,
and examine how PS estimates change over those plausible values. We note that limits on
the values of plausible sensitivity parameters imply bounds for PS estimands as well.
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Following [5] and [9], we present a sensitivity analysis framework that encodes unmea-
sured confounding as continuous sensitivity parameters. We identify two types of (simul-
taneous) unmeasured confounding in PS: (1) S-confounding, which affects the estimation
of principal strata, and (2) Y -confounding, which affects the estimation of effects on the
response within principal strata. For the setting of binary treatment, binary intermediate
variable, and binary outcome, we develop a nonparametric expression for the bias in stan-
dard PS estimators without covariate adjustment. For the same setting, we also present
an approach to sensitivity analysis using model-based inference with covariate adjustment.
Both strategies can be used to assess sensitivity to unknown direct effects since, as we show,
direct effects are operationally indistinguishable from Y -confounding in this PS context.

Although the general approach applies to any PS estimand, we focus on the complier
average causal effect (CACE) [10], also known as the local average treatment effect (LATE)
[11]. CACE is the PE in the principal stratum {Si : Di(0) 6= Di(1)}. In randomized tri-
als with noncompliance, CACE represents the efficacy of the treatment [see, e.g., 12]. In
mediation studies, CACE represents the average causal effect for the units in the latent
subpopulation whose intermediate variable would change due to the treatment; this includes
the effects that the treatment has on the response both mediated and not mediated via the
intermediate variable of interest. The CACE has been studied in observational settings by
[13] and [14], and alternative PEs have been considered in the observational settings by [5]
and [15]. All of these analyses were based on the assumption of no unmeasured confounding.
Sensitivity to unmeasured confounding has been examined in instrumental variables settings,
which are closely related to PS CACE analysis, by [16]. They use a permutation distribu-
tion to determine the level of unmeasured confounding that discounts a significant treatment
effect. The key differences between the methods of [16] and our framework include (1) we
explicitly identify and parameterize confounding pathways via a model-based approach, and
(2) we examine settings predicated on the possibility of direct effects.

The remainder of the article is organized as follows. Section 2 reviews the standard PS
assumptions, clarifies the role of the assumption of no unmeasured confounding, and demon-
strates the effects of confounding on the CACE estimate using the nonparametric method
of moments. Section 3 presents a general parametric approach to sensitivity analysis for
CACE estimation that addresses unmeasured confounding (and direct effects). Inferences
from both frequentist and Bayesian paradigms are provided. Section 4 illustrates the ability
of the parametric approach to recover the CACE in the presence of confounding in a con-
structed observational study. Section 5 demonstrates how one can apply sensitivity analyses
using the NMC study. Finally, Section 6 concludes with a discussion.

2 Confounding in Principal Stratification

When Zi and Di are binary, the principal strata are Si ∈ {(0, 0), (1, 0), (1, 1), (0, 1)}. In
non-compliance contexts, the Si are often called, in the order shown, never-takers (Si = n),
compliers (Si = c), always-takers (Si = a), and defiers (Si = d), as in [17]. Principal strata
can be defined in settings other than non-compliance; for instance, PA as a treatment, obesity
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(BMI> 30) as a binary intermediate variable, and the event of CVD as a response. We use
the familiar nomenclature of non-compliance to generically refer to Si.

In order to identify the principal effects, the following assumptions are often made.

A1. Stable unit treatment value assumption (SUTVA) [18]. There are no different versions
of any single treatment arm and no interference between units.

A2. Monotonicity. Di(1) ≥ Di(0) for all i, ruling out the principal stratum of defiers.

A3. Exclusion restriction (ER). If Di(1) = Di(0), then Yi(1) = Yi(0) for all i, implying that
compliers, always-takers, and never-takers experience no direct effect of treatment on
response.

A4. No unmeasured confounding. (Yi(0), Yi(1), Si) ⊥⊥ Zi|Xi for all i and observed covariates
X. This is referred to as strong ignorability of assignment [19].

In randomized experiments, analysts can assume A4 by design, but A3 may not hold due
to direct effects of treatment on response; in observational studies, neither A3 nor A4 are
guaranteed. We assume A1 and A2 for the remainder of the article. However, we depart
from the classical PS set-up by not assuming A3 and A4. As we show in Section 2.2, the
effects of violations of the ER are not distinguishable from the effects of Y -confounding,
so that we examine the consequences for inference when both A3 and A4 are incorrect but
applied regardless. We begin by characterizing unmeasured confounding.

2.1 Characterizing Unmeasured Confounding

The no unmeasured confounding assumption A4 can be expressed as

Pr(Yi(0), Yi(1), Si|Zi = 1, Xi) = Pr(Yi(0), Yi(1), Si|Zi = 0, Xi), (1)

for all i. We do not condition on D in (1) since it is completely determined given S and
Z. Under (1), the PS setting may be represented graphically by Figure 1a. Unmeasured
confounding arises, and (1) fails, when some possibly multidimensional variable U that effects
(Yi(0), Yi(1)) and S—after adjustment for X—also affects Z, as represented in Figure 1b.

When such a U exists, we can rewrite (1) as

Pr(Yi(0), Yi(1), Si|Zi, Xi, Ui) = Pr(Yi(0), Yi(1)|Zi, Si, Xi, U
Y |S
i ) Pr(Si|Zi, Xi, U

S
i ).

Here, we partition the unmeasured confounders into UY |S and US, which are the possibly
overlapping subsets of U that affect each component of the likelihood. This factorization
suggests that unmeasured confounding can arise via two pathways.

1. S-confounding : the distribution of S varies with Z because of US (see Figure 1c), i.e.,

Pr(Si|Zi = 1, Xi) 6= Pr(Si|Zi = 0, Xi);
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2. Y -confounding : within S, the distribution of (Y (0), Y (1)) varies with Z because of
UY |S (see Figure 1d), i.e.,

Pr(Yi(0), Yi(1)|Zi = 1, Si = s,Xi) 6= Pr(Yi(0), Yi(1)|Zi = 0, Si = s,Xi).

When S-confounding or Y -confounding exists, (1) no longer holds, and inferences predicated
on this assumption can be biased.

[Figure 1 about here.]

2.2 Implications of Unmeasured Confounding and a False Exclu-
sion Restriction

The role of A3 and A4 can be illustrated in the simple setting of no covariates, binary
outcomes, and an additive treatment effect. Here, the CACE is

θ∗c = Pr(Yi(1)|Si = c)− Pr(Yi(0)|Si = c).

Under A1–A4, the CACE is identifiable, and equal to

θ̂obsc = Pr(Yi(1)|Si = c, Zi = 1)− Pr(Yi(0)|Si = c, Zi = 0)

=
(p11π11 − p10π10) + (p01π01 − p00π00)

1− π01 − π10
. (2)

Here, pdz = Pr(Y obs
i = 1|Di = d, Zi = z) and πdz = Pr(Di = d|Zi = z) for d = 0, 1 and

z = 0, 1, where Y obs
i = ZiYi(1) + (1− Zi)Yi(0) [17]. All quantities in (2) are estimable from

the observed proportions. The value of p11 results from a mixture of compliers and always-
takers, and the value of p00 results from a mixture of compliers and never-takers. A1-A4
identifies the complier contribution in each mixture.

The ER implies that, for always-takers and never-takers, there is no direct effect of
treatment on response, i.e., Pr(Yi(1) = 1|Si = s, Zi = z) = Pr(Yi(0) = 1|Si = s, Zi = z),
where s ∈ {a, n}. If, instead, there is an unknown direct effect of treatment on response (as
in Figure 1e) for the always-takers or never-takers, then for some s ∈ {a, n} we have

τ ∗s = Pr(Yi(1) = 1|Si = s, Zi = z)− Pr(Yi(0) = 1|Si = s, Zi = z) 6= 0, for z = 0, 1.

The direct effect τ ∗s is constant across treatment arms z for s ∈ {a, n} for coherency. We do
not define an analogous τ ∗c as it equals θ∗c ; hence, the CACE includes both direct effect of
treatment on response and indirect effects carried through the intermediate variable.

No unmeasured confounding implies that the principal strata distributions are the same
across treatments, so that Pr(Si = a) = Pr(Si = a|Zi = 0) = π10 and Pr(Si = n) = Pr(Si =
n|Zi = 1) = π01. This is false if there is S-confounding, where for some s ∈ {a, n} (c stratum
is automatically determined by a and n), we have

ξ∗s = Pr(Si = s|Zi = 1)− Pr(Si = s|Zi = 0) 6= 0.
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With the ER, no unmeasured confounding further implies that the distribution of out-
comes for the always-takers and never-takers are the same across treatments, so that

p10
A2
= Pr(Y obs

i = 1|Si = a, Zi = 0)
A4
= Pr(Yi(0) = 1|Si = a)

A3
= Pr(Yi(1) = 1|Si = a),

p01
A2
= Pr(Y obs

i = 1|Si = n, Zi = 1)
A4
= Pr(Yi(1) = 1|Si = n)

A3
= Pr(Yi(0) = 1|Si = n).

It also implies that Pr(Yi(0), Yi(1)|Si = c, Zi = 1) = Pr(Yi(0), Yi(1)|Si = c, Zi = 0). These
fail in the presence of Y -confounding, since even with the ER, for some s ∈ {a, n, c} we have

η∗s = Pr(Yi(z) = 1|Si = s, Zi = 1)− Pr(Yi(z) = 1|Si = s, Zi = 0) 6= 0, for z = 0, 1.

For coherency, the η∗s is constant across potential outcomes Y (z) for each s ∈ {a, n, c}.
When A3 and A4 fail, i.e., τ ∗{a,n} 6= 0, η∗{a,n,c} 6= 0, and ξ∗{a,n} 6= 0, (2) is a biased estimator

of θ∗c since, letting psz = Pr(Yi(z) = 1|Si = s, Zi = z) and πsz = Pr(Si = s|Zi = z), we have

1. p10 = pa1 − τ ∗a − η∗a rather than pa1 when τ ∗a , η
∗
a 6= 0,

2. p01 = pn0 + τ ∗n + η∗n rather than pn0 when τ ∗n, η
∗
n 6= 0,

3. π10 = πa1 − ξ∗a rather than πa1 when ξ∗a 6= 0,

4. π01 = πn0 + ξ∗n rather than πn0 when ξ∗n 6= 0, and

5. Pr(Yi(1)|Si = c, Zi = 1)− Pr(Yi(0)|Si = c, Zi = 0) = θ∗c + η∗c , when η∗c 6= 0.

We can use these facts to define a new estimator of θ∗c when A3 and A4 do not hold, namely

θ̂adjc = −η∗c +
p11π11 − (p10 + τ ∗a + η∗a)(π10 + ξ∗a)

1− π01 − (π10 + ξ∗a)
− p00π00 − (p01 − τ ∗n − η∗n)(π01 − ξ∗n)

1− π10 − (π01 − ξ∗n)
.

(3)

A key observation from this formulation is that for s ∈ {a, n}, observable direct effects τ ∗s
and Y-confounding effects η∗s are not distinguishable since both always appear together as a
sum. This is apparent in Figures 1d and 1e, which are indistinguishable as data generating
mechanisms. Thus, operationally, for s ∈ {a, n}, τ ∗s and η∗s can be treated as a single
parameter. For example, in (3), we can define δ∗s = τ ∗s + η∗s to represent the direct effect plus
Y -confounding.

2.3 Illustration of Confounding

Applying (2) in the presence of S-confounding and Y -confounding can result in invalid
conclusions. However, adjusting for confounding using (3) can correct these problems. To
illustrate this, we use the data in Table 1, which mimics the observed πdz and pdz data from
a flu vaccine trial described in [20], ignoring covariates. For now, the response and treatment
are left context-free to emphasize the generality of these issues.
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[Table 1 about here.]

Since we only see D and not S, many population proportions consistent with the data in
Table 1 exist. For example, the topmost example in Table 2 has no confounding: the propor-
tions of always-takers and never-takers, and proportions of Y obs = 1 within these two strata
do not change with Z. The true θ∗c = .001− .117 = −0.116, and θ̂obsc correctly estimates θ∗c .
Alternatively, the middle of Table 2 shows one S-confounding example where the propor-
tions of principal strata differ across Z (ξ∗a = 0.13 and ξ∗n = −0.09). Finally, the bottommost
example in Table 2 is a Y -confounding example, where the outcome proportions differ across
Z within the always-taker and never-taker strata (δ∗a = −0.019 and δ∗n = −0.020).

[Table 2 about here.]

Regardless of which population proportions from Table 2 are true, θ̂obsc = −0.116. How-
ever, the true θ∗c for the various settings from Table 2 are approximately −0.116, −0.053,
and 0.023. Clearly, θ̂obsc is biased for θ∗c in cases of S- and Y -confounding. The bias is striking
when interpreted as proportion change from baseline: The true θ∗c values represent a 99%
reduction, a 54% reduction and a 230% increase in rates. Using (3) with correctly specified
values of δ∗{a,n} and ξ∗{a,n} (and η∗c = 0) implied by Table 2 appropriately adjusts θ̂adjc so that
it is consistent for θ∗c . This holds for simultaneous S-confounding and Y -confounding as well.

In practice, δ∗s and ξ∗s are not known, so analysts should examine the sensitivity of
conclusions to a range of their plausible values. For example, ξ∗a = 0.13 implies an additional
13% more always-takers for units with z = 1 than with z = 0; and, η∗a = −0.019 implies
that, among always-takers, the probability of Yi(z) = 1 is about 2% smaller for units with
z = 1 than with z = 0. Analysts can determine the values of δ∗s and ξ∗s that alter conclusions
based on θ̂obsc , and judge the plausibility of those values. We do not present examples of
these approaches here, preferring instead to illustrate sensitivity analysis for model-based
application of PS.

3 Sensitivity Analysis using Parametric Models

3.1 Parametric Models

The non-parametric estimator θ̂adjc is useful when observed covariates X are deemed not
to cause bias, e.g., when they are finely balanced across treatment groups and are not
strongly predictive of S. In settings where this is not the case, it may be possible to stratify
samples by X (or perhaps by percentiles of propensity scores) and use θ̂adjc separately in each
stratum. When this is not possible, analysts can control for X using parametric models for
PS. This has several potential advantages over the nonparametric approach, including (1)
parametric modeling readily adjusts for multiple observed covariates, which can reduce bias
and improve precision, and (2) parametric modeling offers conceptually straightforward ways
to incorporate complexities like multilevel structure, multiple outcomes, and latent variables.
A disadvantage of parametric approaches is the risk of model misspecification, making it
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essential for analysts to employ model checking procedures, e.g., posterior predictive checks
in the Bayesian paradigm, and examine alternate model specifications.

Typically, two models are specified in PS analysis: one for the marginal distribution of
Si given (Zi, Xi) and one for the conditional distribution of Yi(z) given (Si, Zi, Xi). When
both Zi and Di are binary, a natural and common choice for the Si model is the multinomial
logit regression model [12]. Using compliers as the reference group, we have

log
Pr(Si = s|Zi, Xi)

Pr(Si = c|Zi, Xi)
= Xiβs + Ziξs, s ∈ {a, n}, (4)

where X includes an intercept term and Pr(Si = c|Zi, Xi) = 1−
∑

s∈{a,n}
Pr(Si = s|Zi, Xi). As

with ξ∗s in Section 2.2, ξs in (4) represents S-confounding; however, ξs is a different parameter
than ξ∗s defined on a multiplicative scale. Specifically, for s ∈ {a, n} we have

exp(ξs) =
Pr(Si = s|Zi = 1, Xi = x)/Pr(Si = c|Zi = 1, Xi = x)

Pr(Si = s|Zi = 0, Xi = x)/Pr(Si = c|Zi = 0, Xi = x)
. (5)

Each ξs is assumed to be constant across x. Thus, ξs is the conditional odds ratio for being
in stratum s ∈ {a, n} versus being a complier when going from Z = 0 to Z = 1, given
X. For instance, the middle example of Table 2 was created using exp(ξa) = 1/1.5 and
exp(ξn) = 1.5, so that the ratio of never-takers to compliers within each level of X increases
by a factor of 1.5 when going from Z = 0 to Z = 1. Since there are no covariates, this
corresponds to ξ∗a = 0.13 and ξ∗n = −0.09 in the notation of Section 2.2.

For sensitivity analysis in practice, it is convenient to select the range of ξa and ξn to
be examined on the basis of the observed principal strata probabilities, πdz, resulting from
aggregating the data across the levels of X. For example, in Table 1, π01 = πn1 = .69 and
π01 = πa0 = .12. To examine a level of confounding that could potentially result in, say,
πn0 = .69 ± .1 and πn0 = .12 ± .05, we could first create a grid of ξ∗a and ξ∗n sensitivity
specifications (as defined in Section 2.2) that produced the values of πn0 and πa1 under
consideration, and convert that grid to ξa and ξn values to be subsequently used in model-
based sensitivity analysis. A complementary approach is to specify bounds for each ξs
using observed covariate magnitudes. For example, researchers may hypothesize that the
magnitude of ξn could be up to twice the magnitude of the largest (standardized) estimated
βn. Finally, one could set each ξs via interpretations of the odds ratios, e.g., set exp(ξa) = 2
so that the odds of never-takers to compliers within each level of X doubles when going from
Z = 0 to Z = 1.

Binary potential outcomes Yi(z) can be modeled using a logistic regression,

logit Pr(Yi(z) = 1|Zi = z, Si, Xi) = Xiαx + ISi=cZi(θc + ηc) +
∑

s′∈{a,n}

ISi=s′(αs′ + Ziδs′) (6)

where ISi=s′ is an indicator function that equals one if Si = s′ and equals zero otherwise. We
take the CACE to be

θc = logit Pr(Yi(1) = 1|Zi = z, Si = c,Xi)− logit Pr(Yi(0) = 1|Zi = z, Si = c,Xi) (7)
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which is fixed to be the same value for all compliers regardless of z. We also define

ηc = logit Pr(Yi(z) = 1|Zi = 1, Si = c,Xi)− logit Pr(Yi(z) = 1|Zi = 0, Si = c,Xi). (8)

for all compliers for any z. Similarly to θc, for s ∈ {a, n}, we have

exp(δs) = logit Pr(Yi(1) = 1|Zi = z, Si = s,Xi)− logit Pr(Yi(0) = 1|Zi = z, Si = s,Xi). (9)

For computational convenience, we assume that (θc, ηc, δa, δn) are constant across x. As with
(θ∗c , η

∗
c , δ
∗
a, δ
∗
n), (θc, ηc, δa, δn) represent, respectively, a CACE, Y -confounding for compliers,

and Y -confounding plus direct effect for always-takers and never-takers. However, as a
result of the non-collapsibility of logistic regression models [21], (θc, ηc, δa, δn) in (6) must be
interpreted conditional on Z and X in contrast to the interpretations of (θ∗c , η

∗
c , δ
∗
a, δ
∗
n). This

issue relates to another potential disadvantage of the parametric approach compared to the
nonparametric one: one must consider estimands and corresponding sensitivity parameters
that are natural to scale imposed by the parametric model (e.g., log odds ratio in logistic
regression), whereas with the nonparametric approach there is no such constraint and one
can consider a range of estimands such as difference or relative risk.

The sensitivity parameters can be interpreted via odds ratios. For instance, the bot-
tommost example of Table 2 was created using exp(δa) = exp(δn) = 1/1.25, so that the
odds of Yi(z) = 1 are 1.25 times greater when z = 0 than when z = 1 for both always-
takers and never-takers. These correspond to δ∗a = −0.019 and δ∗n = −0.020 (with difference
due to rounding). The CACE, θc, is indistinguishable from the Y -confounding effect in the
compliers strata; however, it is identifiable after specification of ηc (and the other sensi-
tivity parameters). For instance, in the bottommost example in Table 2, exp(θc + ηc) =
(.033/.967)/(.01/.99) = exp(1.21), so that θc is not identified until ηc is specified.

Specification of δ{a,n} and ηc can be based on subject-matter knowledge. For ηc, this
involves the extent to which the odds for Yi(z) = 1 within the complier strata could change
across z as a result of Y -confounding only. For δ{a,n}, interpretation involves the extent to
which the odds for Yi(z) = 1 within the always-taker and never-taker strata could change
across z as a result of direct effects or Y -confounding. If helpful, analysts can decompose
δs into its components from Y -confounding and direct effects. If the scientific experts do
not suspect direct effects, δs could reflect only the effects of confounding. Absent or as a
complement to subject-matter knowledge, analysts can specify ηc and δ{a,n} via methods
similar to those for setting ξs. We demonstrate such methods in Section 5.

The models in (4) and (6) use additive effects of Z and sensitivity parameters that do
not vary with X. It is possible to include interactions of Z and X in the predictor functions
and use the methodology as indicated. However, this presumes that the confounding effects
are constant (on the log odds scale) across all levels of X, which may not be sensible if one
presumes that treatment effects differ with X. Arguably, in scenarios with interactions of Z
and X, analysts should specify sensitivity parameters for each level of X that is interacted
with Z. This can create a large number of sensitivity parameters, making computation and
interpretation cumbersome. Hence, the sensitivity analysis approach here is most appropri-
ate for settings with additive treatment effects. Similarly, because the sensitivity parameters
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do not depend on X, they represent overall effects of confounding (averaged across covari-
ates) across treatment groups. When confounding does not vary within the levels of X,
this specification is completely adequate. When there are differences in confounding, the
sensitivity analyses may be too coarse, resulting in inaccurate results. The nature of this
inaccuracy and its dependence on X is uncertain and a subject for further research.

3.2 Estimation of CACE with Sensitivity Parameters

Given Zi and Xi, the analyst can model Y obs
i and Di with

Pr(Y obs
i , Di = di|Zi = zi, Xi) =

∑
s∈S(zi,di)

Pr(Y obs
i |Si = s, zi, Xi) Pr(Si = s|zi, Xi), (10)

where S(zi, di) denotes the set of all possible principal strata that are consistent with the
observed zi and di. The two distributions on the right side of (10) are specified by (6) and
(4).

As illustrated by an example in Section 4, without any further constraints, the sensitivity
parameters are usually not identifiable from the data since there is no observed information in
the data about the confounding structure underlying (10). We thus recommend the following
multi-step sensitivity analysis procedure. First, specify ξs and δs for S ∈ {a, n} and estimate
θc + ηc. Second, specify ηc to identify θc. The estimation process is repeated for the range
of plausible values of ξs, δs, and ηc.

For any fixed set of sensitivity parameters, the estimation of θc + ηc can proceed using
an Expectation Maximization (EM) algorithm [22] or Bayesian data augmentation [10]. EM
finds posterior modes comparatively quickly, whereas full Bayesian inference automatically
provides measures of inferential uncertainty (given the values of the sensitivity parameters).
The EM algorithm alternately replaces the unobserved Si with their expected values given
current draws of the parameters, and maximizes the parameters given the expected values of
all Si. For the Bayesian analysis, after first specifying prior distributions—we use the added
data conjugate prior distribution of Hirano et al. (2000)—analysts can sample from the
posterior distributions of θ = (βa, βn, αx, αa, αn, θc + ηc) using Metropolis proposals within a
Gibbs sampler. To accomplish this, the posterior distributions of each Si must be sampled,
each instance of which results in new covariate matrices and response vectors in (6) and (4),
respectively. Since a given imputation of Si may result in a likelihood that is maximized on
the boundary of the parameter space (e.g., θc + ηc = −∞), the prior distributions play a key
role in stabilizing the sampling. Mixing can be improved by parameterizing (6) without an
intercept [12] and by using a Metropolis subchain rather than a single proposal for θ to better
follow the fast mixing principal strata. We recommend that analysts obtain MLEs from EM,
and initialize the Gibbs sampler with the MLEs to obtain point and interval estimates.
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4 Demonstration using Introduced Confounding in a

Randomized Study

In this section we show that unadjusted model-based PS estimation of θc is biased in the
presence of S-confounding and Y -confounding, but that analysts can recover the truth using
the sensitivity methodology. To do so, we manipulate data from a randomized experiment
to induce unmeasured confounding in known ways, and examine EM point estimates using
the known correct sensitivity parameter specifications. To streamline the presentation, we
postpone full Bayesian analysis to Section 5. We assume A1 and A2. SUTVA can be
tenuous in infectious disease contexts, but we do not deal with the complication in this
article. Monotonicity is plausible in this setting.

We use data from the second year (1979-1980) of the study done by [20], which is a
randomized encouragement design in which Zi = 1 if person i is encouraged to take an
influenza vaccine by his/her physician and Zi = 0 otherwise. The intermediate variable is
actual receipt of the vaccine, with Di = 1 if person i indeed takes the vaccine and Di = 0
otherwise. The response, flu-related hospitalization, is Y obs

i = 1 if person i gets the flu and
Y obs
i = 0 otherwise. The randomization is done at the level of physician rather than patient,

so that the data are actually clustered. We ignore this feature of the data for illustrations.
The available covariates comprise age in years, sex, race (white/non-white), chronic ob-

structive pulmonary disease (COPD), heart disease (HD), diabetes, renal disease, and liver
disease for 2901 participants. The covariates are closely balanced across encouragement
arms. Regression analyses indicate that higher age and COPD are predictive of taking the
vaccine, whereas HD and COPD are predictive of getting the flu. The predictive role of these
three variables closely mirrors that of the first three eigenvectors of a principal components
analysis of the covariates, which capture age, an approximate COPD/sex/race relationship,
and an approximate heart disease/diabetes relationship. The variation captured in the re-
maining components does not provide any further predictive benefit. We transform age to a
four level factor (< 40; (40, 60]; (60, 80]; ≥ 80) based on the observed relationship between
age and taking the vaccine. Alternative covariate specifications would not entail a different
model fitting approach. Restriction to complete cases using age, COPD, and HD yields 2893
participants.

Adopting a naive interpretation, the observed relationships suggest that (1) older popula-
tions generally have more always-takers and compliers than comparable younger populations,
i.e., the distribution of Si varies with age; and, (2) HD pervasive populations generally have
greater flu prevalence relative to comparable heart healthy populations, i.e., the distribution
of (Yi(0), Yi(1)) varies with heart disease prevalence. Thus, in a similar but hypothetical
observational study, if elderly people are more likely to receive encouragement but age was
not controlled for, there would be a higher proportion of compliers and always-takers in
the treatment arm, resulting in S-confounding. Likewise, if HD patients are more likely to
receive encouragement but HD was not controlled for, there would be a greater proportion of
individuals at risk for flu in the same arm, resulting in Y -confounding. The operational dis-
tinction between S-confounding and Y -confounding is not clear-cut since age and HD have
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some association. Indeed, the example of COPD directly suggests that S-confounding and
Y -confounding may be intimately connected. Nonetheless, separating S-confounding and Y -
confounding offers both operational and conceptual convenience in sensitivity checks, as we
shall discuss. In fact, as there is often overlap between S-confounding and Y -confounding,
comparing to a combined analysis with a single set of parameters characterizing the joint
confounding, this separation may lead to more conservative conclusions, which is usually not
a concern in sensitivity analysis.

For our demonstration, we use discretized age and COPD in the sub-model for Si, and
COPD and HD in the sub-model for Yi(Zi). We use the data with complete cases, except
we discard two more observations (with Z = 0, D = 1, Y = 1, age= 1, COPD= 1, and HD
= 0/1) so that a no S-confounding and no Y -confounding specification is consistent with
the observed data. Without this adjustment, a specification of no S-confounding and no
Y -confounding results in an MLE that lies on the boundary of the parameter space, i.e.,
Pr(Yi(1) = 1|Si = c, Zi = 1, Xi = xi) = 0. We refer to this reduced data set as the test
data. In practice, if a given sensitivity parameter specification results in extreme estimates
of Pr(Yi(z) = 1|Si = s, Zi = z,Xi = xi), e.g., 0 or 1, it is likely not consistent with the
observed data.

We take the truth to be the estimated coefficients in (10) for the test data without any
sensitivity adjustments, i.e., all sensitivity parameters equal zero. The MLE for the CACE
in the test data is θ̂c = −1.87.

We introduce S-confounding by removing half of the observed never-takers in the Zi = 1
arm and half of the observed always-takers in the Zi = 0 arm. Removal was done randomly
but ensuring that Pr(Yi(0) = 1|Si = a, Zi = 0) and Pr(Yi(1) = 1|Si = n, Zi = 1) were not
changed from the observed probabilities in the test data. This guards against inadvertently
inducing Y -confounding, and ensures that the covariate and flu outcome relationships are
not changed. Observed covariate balance remains good for age, COPD, and HD after this
manipulation. Since half of the never-takers in the Zi = 1 arm and half of the always-takers
in the Zi = 0 arm have been removed, and Pr(Y obs

i = 1|Si, Zi, Xi) does not change, the S-
confounding sensitivity parameters for this manipulation are exp(ξa) ≈ 2 and exp(ξn) ≈ 1/2.

Y -confounding is introduced by keeping only HD = 1 individuals in the Ti = 1 arm,
and not using HD as a covariate so that HD is an unmeasured confounder. After the
manipulation, 56.2% of individuals have HD = 1 in the Ti = 0 arm, and 100% of individuals
have HD = 1 in the Ti = 1 arm. The distributions of age and COPD remain balanced in
the treatment arms after the manipulation. This was applied on top of the S-confounding
manipulation, but since HD does not strongly associate with D, we suspect that it will not
drastically alter the previously induced S-confounding of exp(ξn) ≈ 1/2. However, if HD
is more prevalent among compliers than always-takers, or vice-versa, then exp(ξn) ≈ 1/2
will no longer hold. The log odds ratios of the outcomes without covariate adjustment
before and after the manipulations were -0.163 and 0.086, respectively, which corresponds to
approximately correct sensitivity parameters for the Y -confounded data of δa = ηa = δn =
ηn = ηc ≈ 0.25.

We fit the model implied by (10) to the confounded data with a variety of possible values
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for the sensitivity parameters. Figure 2 displays the results in two panels. The top panel
shows contour plots for θ̂c across a variety of combinations of exp(ξa) ∈ [1/3, · · · , 3] and
exp(ξn) ∈ [1/3, · · · , 3] with ηc = δa = δn = 0. The bottom panel shows the contours for the
same range for ξa and ξn with ηc = δa = δn = 0.25.

[Figure 2 about here.]

As seen in the top panel of Figure 2, fitting PS in the confounded data ignoring unmea-
sured confounding results in a biased estimate of the CACE. Correctly specifying exp(ξa) = 2
and exp(ξn) = 1/2, but wrongly setting ηc = δa = δn = 0 also results in a biased estimate.
As evident in the bottom panel of Figure 2, using the approximately correct sensitivity
specifications for S-confounding and Y -confounding nearly recovers the CACE estimate.
Examinations of the α and β parameters show similar results. Allowing sensitivity param-
eters to be estimated by the data rather than be pre-specified results in the EM algorithm
finding η̂a = η̂n = .027, ξ̂a = 1.42 and ξ̂n = .80. These result in θ̂c = .128 (with ηc = 0).
Estimation when allowing η̂a 6= η̂n resulted in η̂a = −.32, η̂n = .011, ξ̂a = 1.77, ξ̂n = .88, and
θ̂c = .42. Hence, in all cases, using MLE with free sensitivity parameters results in biased
estimates.

Figure 2 provides a visualization of the topographical nature of potential confounding.
The primary benefit of these plots, however, is to provide a diagnostic alternative to careful
bound specification for ξ{a,n}, ηc, and δ{a,n}. Analysts instead can consider large spaces of
potential values for the parameters, construct plots like Figure 2, and identify the levels of
confounding that would alter study conclusions. These values can be interpreted using (5)
and (9), so that scientific experts can decide if the identified levels are plausible enough to
cast doubt on conclusions. This approach is related to the sensitivity checks done by [23] in
observational study contexts that do not involve PS.

5 Application to the Swedish NMC data

We now apply the sensitivity methodology to the observational Swedish NMC study. The
NMC was conducted in year 1997, when 300,000 Swedes participated in a national fund-
raising event organized by the Swedish Cancer Society. Each participant was asked to com-
plete a questionnaire that included items on known or suspected risk factors for cancer and
cardiovascular disease (CVD). These individuals were followed from year 1997 to 2004 using
the Swedish patient registry, and each cancer and CVD event was recorded. We seek to
investigate the causal effect of physical activity (PA) on CVD mediated through body mass
index (BMI). Following Sjölander et al. [5], our analysis assumes PA drives BMI and does
not examine possible reverse causality. Further details on the NMC can be found in [24].

For each subject i, Zi = 1 if he/she reported having low PA and Z = 0 otherwise; Di = 1
if he/she had BMI greater than 30 in the baseline year and Di = 0 otherwise; and, Yi = 1
if he/she had at least one recorded CVD event during follow-up and Yi = 0 otherwise. PS
analysis of the same dataset with BMI being treated as a continuous immediate variable can
be founded in Schwartz et al. [25]. Among all subjects, 38,349 reported high PA and 2,956
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reported low PA. The former included 2,262 cases of CVD, and the latter included 172 cases.
Adapting the non-compliance language, in this setting the always-takers and never-takers
are the subjects who would be obese and not obese, respectively, regardless of their PA level;
the compliers are the subjects who would be obese if they did not exercise and not obese if
they exercised. We believe that SUTVA and monotonicity are plausible in this setting.

In the data we analyzed, the only available covariate is age recorded in days. It is well
known that age is highly predictive of CVD and PA, so that we should control for age in
the analysis. We first balance the covariate distribution of age in the treatment groups by
conducting one-to-one nearest neighbor matching without replacement on age. This results
in 2,956 pairs of high-exercisers and low-exercisers, with 111 and 172 CVD cases, respectively.

We fit the models in (4) and (6) on the matched dataset, including age as a covariate,
to estimate θc. We examined models including an interaction between treatment and age,
but the interaction coefficient was insignificant and the estimated treatment effect did not
change substantially, so we chose not to include the interaction. This model check, while
not conclusive, suggests that the treatment effect does not vary across the levels of X. We
use the Bayesian analysis described in Section 3 to estimate a posterior mode for θc of 4.9;
the 95% credible interval does not include zero, indicating a higher risk of CVD among low
exercisers whose weight would be impacted by exercise. However, even for the matched
dataset, the assumption of no unmeasured confounding is questionable, because people with
high PA differ from those with low PA in ways that are related to CVD risk, e.g., diet and
life style. In addition, it is widely accepted in the medical community [e.g. 26] that PA has
direct effects on CVD, implying that the ER is not applicable. Because of these potential
violations, we perform sensitivity analysis for θc.

To propose a range for potential S-confounding sensitivity, we consider the observed
principal strata probabilities aggregated over age, i.e., Pr(D = 1|Z = 0) = πa0 = .073
and Pr(D = 0|Z = 1) = πn1 = .869. We posit that S-confounding could result in πa1 =
.073 ± .02 and πn0 = .869 ± .02, which implies values of (πc0, πc1) ∈ [.04, .08]. Thus, we
allow for up to a two-fold difference (in either direction) in the percentage of compliers
in the treatment arms, which seems a reasonably strong amount of S-confounding. We
proceed by making a grid of values (πa1, πn0) ∈ [−.02, .02]× [−.02, .02], each entry of which,
when combined with the observed πa0 and πa1, identifies πc0 and πc1. Each point in this
grid is converted to specifications for ξa and ξn using (5) without covariates resulting in
(ξa, ξn) ∈ [−0.66, 0.66] × [−.90, 1.00]. These bounds are crude because the principal strata
probabilities actually vary with age, but they enable sensible assessments of the effects of
S-confounding on estimation of θc.

To propose a range for Y -confounding and direct effects sensitivity, we make the sim-
plifying assumption that δa = δn, i.e., always-takers and never-takers share the same Y -
confounding plus direct effect, so that it can be represented by one coefficient in (6). In
language of the NMC, setting δa = δn implies that the difference between those who exercise
frequently and those who do not are the same for people whose BMI is always low and for
people whose BMI is always high (regardless of exercise). A similar assumption is used by
[5] in their estimation of direct effects of PA on CVD. Setting δa = δn is largely motivated
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by parsimony: it enables us to explore a three-dimensional sensitivity space as opposed to
a four-dimensional one. In principle, when the equality is far from plausible, analysts could
conduct the four-dimensional sensitivity analysis, although this can be unwieldy. Alterna-
tively, analysts could identify the maximum δ-effect for the always-takers and never-takers,
and set both δa and δn equal to that maximum as a “worse-than-expected” scenario.

We expect any direct effects to increase CVD incidence, because the treatment is low PA.
Furthermore, potential Y -confounding most likely would increase CVD incidence, since the
high-exercisers may maintain other-CVD protective habits beyond regular PA. Therefore,
we examine the sensitivity parameters δa = δn ∈ [0, 1.1] and ηc ∈ [0, .5]. The former
corresponds to a maximum three-fold (e1.1 = 3.0) increase in the odds of getting CVD due
to direct effect and Y -confounding for individuals whose BMI is not affected by PA, and the
later corresponds to a maximum 1.7-fold (e0.5 = 1.7) increase in the odds of getting CVD
due to direct effect and Y -confounding for individuals whose BMI is affected by PA. We note
that δa and δn are interpreted as the effects of unmeasured confounding only when the ER
is assumed to hold.

Figure (3) shows the sensitivity of CACE estimates from the logistic regression to these
levels of potential S-confounding and Y -confounding plus direct effect, including uncertainty
in the CACE estimates via ‘maximal’ point-wise 95% credible intervals. As is seen in Figure
(3), there is little sensitivity to ξn, larger ξa implies slightly larger θc, and the sign of the
estimated θc is sensitive to δa = δn. Thus, for δa = δn < .4, i.e., 1.5 fold increase in
odds, (ξa, ξn) ∈ [−0.66, 0.66] × [−.90, 1.00], and ηc ∈ [0, .5], there is a significant and large
protective of benefit PA, mediated through the effect on BMI, on CVD. Evidence for a
negative significant effect requires δa = δn approximately larger than .9, indicating a e.9 =
2.5 fold increase in the odds of getting CVD due to Y -confounding plus direct effect for
individuals whose BMI is not affected by PA.

[Figure 3 about here.]

Using the same data, [5] found evidence of a significant direct effect of PA, with a point
estimate of 0.26 and standard error of .085. They suggested that this estimate was con-
servative and the true effect could be larger. Our analysis suggests that evidence for a
protective indirect effect of reduced BMI on CVD as a result of PA depends primarily on
the strength of δa (and δn). Scientific experts who believe that the direct protective benefits
of PA and the effects of unmeasured confounders produce greater than a 1.5-fold decrease in
the odds of CVD should be skeptical of the beneficial effect on CVD of reducing BMI via PA,
whereas those who believe that such ratios are unlikely can feel confident in the unadjusted
PS conclusions.

6 Concluding Remarks

While facilitating rich investigations of the robustness of results to unmeasured confounding,
conducting a full sensitivity analysis involves specification of many parameters. Analysts may
choose to reduce the number of free parameters for rougher but faster checks. For example,
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setting δa = δn = ηc will collapse Y -confounding to one parameter. This implies that the
unobserved confounders are distributed uniformly across the strata, i.e., that Y -confounding
does not vary by S, which may be a useful simplification even if not strictly true.

While the interpretation of each sensitivity parameter does not depend on the settings of
the other sensitivity parameters, the parameters are not variation independent. For example,
the effects of setting δn = 1 differ when ξn = 1 than when ξn = −1, and some combinations
actually cannot be possible given the data. This motivates why we recommend that analysts
examine plots like Figure 2 for a wide array of combinations of parameters to identify sce-
narios in which S- and Y -confounding alter study conclusions. Scientific experts then can
evaluate the plausibility of those sensitivity regions taking the subject matter into account.
Impossible combinations are indicated by non-sensible results, such as parameter estimates
going off to infinity or negative estimates of various probabilities. While not pursued in this
article, it would be possible to produce an algorithm to find sensitivity parameter bounds
on the basis of consistency of MLE or posterior sampling results.

The methods proposed here readily extend to the case of non-binary outcomes. Further
development is required to adapt the methods to continuous intermediate variables, such as
BMI in its original scale (e.g., as in [25]). Moreover, we did not explore sensitivity to model
mis-specification in PS analysis, which can be as crucial as the structural assumptions since
model-based PS inference usually involves weakly identified models. Under the Bayesian
paradigm, this can be examined via tools like posterior predictive checks; this is a subject
for further investigation.

The Matlab code of the EM algorithm and Bayesian data augmentation are available at
www.stat.tamu.edu/~scott/PSsensitivity.
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Figure 1: Directed acyclic graphs (DAGs) illustrating the relationsips among the variables in
various PS scenarios. An arrow between two variables denotes that the initial variable influ-
ences the one it points to, with dashed lines indicating a relationship that is non-negligible
but not observed. The relevant structures are: (a) no unmeasured confounding, (b) unmea-
sured confounding, (c) S-confounding, (d) Y -confounding, (e) no unmeasured confounding,
but a direct effect of Z on Y , which is operationally indistinguishable from Y -confounding
in (d).
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Contour plots of θ̂c
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Figure 2: Illustrations of sensitivity contour plots for manipulated McDonald data. The top
plot shows MLE contours for θ̂c across the possible combinations of ξs with ηc = δ{a,n} = 0.
The bottom plot shows the same when ηc = δ{a,n} = 0.25, which are the true values. The
dashed cross-hairs are at the approximately correct S-confounding sensitivity parameter
values, exp(ξa) = 2 and exp(ξn) = 1/2. The dashed curve in the bottom plot indicates where
θ̂c equals θc; this curve does not appear in the top plot because it is off the graph. The plots
show that standard PS estimates of θc are biased in the presence of unmeasured confounding,
and it is possible to recover the true θc when correct sensitivity parameters are used.
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Sensitivity of θc to δa = δn, ηc, ξa, and ξn
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Figure 3: Estimates – and uncertainty assessment – of the sensitivity of the CACE in the
NMC data to potential S-confounding and Y -confounding. In all panels, for each level
of δa = δn, the highest and lowest lines trace the maximum and minimum endpoints of
point-wise 95% credible intervals for all values of ξa and ξn examined in the plot. The top
left panel shows the overall sensitivity to confounding for δa = δn ∈ [0, 1] and (ξa, ξn) ∈
[−0.66, 0.66]× [−.90, 1.00]. The remaining five panels decompose the top left panel into its
five primary trajectories corresponding to ξa = −.66,−.33, 0, .33, .66 and re-plots sensitivity
to ξn and δa = δn. For ηc > 0, the results in the figure are shifted down by ηc.
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p00 = .088 p10 = .112 p01 = .083 p11 = .069
π00 = .88 π10 = .12 π01 = .69 π11 = .31

Table 1: Observed marginal proportions in the influenza study, i.e., ignoring covariates [20].
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Z = 0 Z = 1 Z = 0 Z = 1
No S-confounding and no Y -confounding

S = n πn0 = .69 πn1 = .69 pn0 = .083 pn1 = .083
S = c πc0 = .12 πc1 = .12 pc0 ≈ .117 pc1 ≈ .001
S = a πa0 = .19 πa1 = .19 pa0 = .112 pa1 = .112

S-confounding and no Y -confounding
S = n πn0 ≈ .56 πn1 = .69 pn0 = .083 pn1 = .083
S = c πc0 ≈ .25 πc1 ≈ .21 pc0 ≈ .099 pc1 ≈ .046
S = a πa0 = .19 πa1 ≈ .10 pa0 = .112 pa1 = .112

Y -confounding and no S-confounding
S = n πn0 = .69 πn1 = .69 pn0 ≈ .102 pn1 = .083
S = c πc0 = .12 πc1 = .12 pc0 ≈ .010 pc1 ≈ .033
S = a πa0 = .19 πa1 = .19 pa0 = .112 pa1 ≈ .092

Table 2: Example of population probabilities with various forms S-confounding and Y -
confounding or lack thereof.
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