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Abstract.
Panel studies typically suffer from attrition, which reduces sample

size and can result in biased inferences. It is impossible to know whether
or not the attrition causes bias from the observed panel data alone.
Refreshment samples—new, randomly sampled respondents given the
questionnaire at the same time as a subsequent wave of the panel—
offer information that can be used to diagnose and adjust for bias due
to attrition. We review and bolster the case for the use of refreshment
samples in panel studies. We include examples of both a fully Bayesian
approach for analyzing the concatenated panel and refreshment data,
and a multiple imputation approach for analyzing only the original
panel. For the latter, we document a positive bias in the usual multiple
imputation variance estimator. We present models appropriate for three
waves and two refreshment samples, including non-terminal attrition.
We illustrate the three-wave analysis using the 2007-2008 Associated
Press—Yahoo! News Election Poll.
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1. INTRODUCTION

Many of the the major ongoing government or government-funded surveys have panel
components including, for example in the U.S., the American National Election Study
(ANES), the General Social Survey (GSS), the Panel Survey on Income Dynamics (PSID),
and the Current Population Survey (CPS). Despite the millions of dollars spent each year
to collect high quality data, analyses using panel data are inevitably threatened by panel
attrition (Lynn, 2009); that is, some respondents in the sample do not participate in later
waves of the study because they cannot be located or refuse participation. For instance,
the multiple-decade PSID, first fielded in 1968, lost nearly 50 percent of the initial sample
members by 1989 due to cumulative attrition and mortality. Even with a much shorter
study period, the 2008-2009 ANES Panel Study, which conducted monthly interviews over
the course of the 2008 election cycle, lost 36 percent of respondents in less than a year.

At these rates, which are not atypical in large-scale panel studies, attrition can have
serious impacts on analyses that use only respondents who completed all waves of the
survey. At best, attrition reduces effective sample size, thereby decreasing analysts’ abili-
ties to discover longitudinal trends in behavior. At worst, attrition results in an available
sample that is not representative of the target population, thereby introducing potentially
substantial biases into statistical inferences. It is not possible for analysts to determine the
degree to which attrition degrades complete-case analyses by using only the collected data;
external sources of information are needed.

One such source is refreshment samples. A refreshment sample includes new, randomly
sampled respondents who are given the questionnaire at the same time as a second or subse-
quent wave of the panel. Many of the large panel studies now routinely include refreshment
samples. For example, most of the longer longitudinal studies of the National Center for
Education Statistics, including the Early Childhood Longitudinal Study and the National
Educational Longitudinal Study, freshened their samples at some point in the study, either
adding new panelists or as a separate cross-section. The National Educational Longitu-
dinal Study, for instance, followed 21,500 eighth graders in two year intervals until 2000
and included refreshment samples in 1990 and 1992. It is worth noting that by the final
wave of data collection, just 50% of the original sample remained in the panel. Overlapping
or rotating panel designs offer the equivalent of refreshment samples. In such designs, the
sample is divided into different cohorts with staggered start times such that one cohort of
panelists completes a follow-up interview at the same time another cohort completes their
baseline interview. So long as each cohort is randomly selected and administered the same
questionnaire, the baseline interview of the new cohort functions as a refreshment sample
for the old cohort. Examples of such rotating panel designs include the GSS and the Survey
of Income and Program Participation.

Refreshment samples provide information that can be used to assess the effects of panel
attrition and to correct for biases via statistical modeling (Hirano et al., 1998). However,
they are infrequently used by analysts or data collectors for these tasks. In most cases,
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attrition is simply ignored, with the analysis run only on those respondents who completed
all waves of the study (e.g., Jelicic et al., 2009), perhaps with the use of post-stratification
weights (Vandecasteele and Debels, 2007). This is done despite widespread recognition
among subject matter experts about the potential problems of panel attrition (e.g., Ahern
and Le Brocque, 2005).

In this article, we review and bolster the case for the use of refreshment samples in
panel studies. We begin in Section 2 by briefly describing existing approaches for handling
attrition that do not involve refreshment samples. In Section 3 we present a hypothetical
two wave panel to illustrate how refreshment samples can be used to remove bias from
nonignorable attrition. In Section 4 we extend current models for refreshment samples,
which are described exclusively with two-wave settings in the literature, to models for
three waves and two refreshment samples. In doing so, we discuss modeling non-terminal
attrition in these settings, which arises when respondents fail to respond to one wave but
return to the study for a subsequent one. In Section 5 we illustrate the three-wave analysis
using the 2007-2008 Associated Press-Yahoo! News Election Poll (APYN), which is a panel
study of the 2008 U.S. Presidential election. Finally, in Section 6 we discuss some limitations
and open research issues in the use of refreshment samples.

2. PANEL ATTRITION IN LONGITUDINAL STUDIES

Fundamentally, panel attrition is a problem of nonresponse, so it is useful to frame
the various approaches to handling panel attrition based on the assumed missing data
mechanisms (Rubin, 1976; Little and Rubin, 2002). Often researchers ignore panel attrition
entirely and use only the available cases for analysis, for example, listwise deletion to create
a balanced subpanel (e.g., Bartels, 1993; Wawro, 2002). Such approaches assume that
the panel attrition is missing completely at random (MCAR); that is, the missingness is
independent of observed and unobserved data. We speculate that this is usually assumed for
convenience, as often listwise deletion analyses are not presented with empirical justification
of MCAR assumptions. To the extent that diagnostic analyses of MCAR assumptions in
panel attrition are conducted, they tend to be reported and published separately from the
substantive research (e.g., Zabel, 1998; Fitzgerald et al., 1998; Bartels, 1999; Clinton, 2001;
Kruse et al., 2009), so that it is not clear if and how the diagnostics influence statistical
model specification.

Considerable research has documented that some individuals are more likely to drop
out than others (e.g., Behr et al., 2005; Olsen, 2005), making listwise deletion a risky
analysis strategy. Many analysts instead assume that the data are missing at random
(MAR); that is, missingness depends on observed, but not unobserved, data. One widely
used MAR approach is to adjust survey weights for nonresponse, for example by using post-
stratification weights provided by the survey organization (e.g., Henderson et al., 2010).
Re-weighting approaches assume that dropout occurs randomly within weighting classes
defined by observed variables that are associated with dropout.
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Although re-weighting can reduce bias introduced by panel attrition, it is not a fail-
safe solution. There is wide variability in the way weights are constructed and in the
variables used. Nonresponse weights are often created using demographic benchmarks, e.g.,
from the CPS, but demographic variables alone are unlikely to be adequate to correct for
attrition (Vandecasteele and Debels, 2007). As is the case in other nonresponse contexts,
inflating weights can result in increased standard errors and introduce instabilities due to
particularly large or small weights (Lohr, 1998; Gelman, 2007).

A related MAR approach uses predicted probabilities of nonresponse, obtained by model-
ing the response indicator as a function of observed variables, as inverse probability weights
to enable inference by generalized estimating equations (e.g., Robins and Rotnitzky, 1995;
Robins et al., 1995; Scharfstein et al., 1999; Chen et al., 2010). This potentially offers
some robustness to model mis-specification, at least asymptotically for MAR mechanisms,
although inferences can be sensitive to large weights. One also can test whether or not
parameters differ significantly due to attrition for cases with complete data and cases with
incomplete data (e.g., Diggle, 1989; Chen and Little, 1999; Qu and Song, 2002; Qu et al.,
2011), which can offer insight into the appropriateness of the assumed MAR mechanism.

An alternative approach to re-weighting is single imputation, a method often applied
by statistical agencies in general item nonresponse contexts (Kalton and Kasprzyk, 1986).
Single imputation methods replace each missing value with a plausible guess, so that the
full panel can be analyzed as if their data were complete. Although there are a wide range
of single imputation methods (hot deck, nearest neighbor, etc.) that have been applied
to missing data problems, the method most specific to longitudinal studies is the last-
observation-carried-forward approach, in which an individual’s missing data are imputed
to equal his or her response in previous waves (e.g., Packer et al., 1996). Research has
shown that this approach can introduce substantial biases in inferences (e.g., see Hogan
and Daniels, 2008).

Given the well-known limitations of single imputation methods (Little and Rubin, 2002),
multiple imputation (see Section 3) also has been used to handle missing data from attri-
tion (e.g., Pasek et al., 2009; Honaker and King, 2010). As with the majority of available
methods used to correct for panel attrition, standard approaches to multiple imputation
assume an ignorable missing data mechanism. Unfortunately, it is often expected that
panel attrition is not missing at random (NMAR); that is, the missingness depends on
unobserved data. In such cases, the only way to obtain unbiased estimates of parameters
is to model the missingness. However, it is generally impossible to know the appropriate
model for the missingness mechanism from the panel sample alone (Kristman et al., 2005;
Basic and Rendtel, 2007; Molenberghs et al., 2008).

Another approach, absent external data, is to handle the attrition directly in the statis-
tical models used for longitudinal data analysis (Verbeke and Molenberghs, 2000; Diggle
et al., 2002; Fitzmaurice et al., 2004; Hedeker and Gibbons, 2006; Hogan and Daniels,
2008). Here, unlike with other approaches, much research has focused on methods for han-
dling nonignorable panel attrition. Methods include variants of both selection models (e.g.,

4



Hausman and Wise, 1979; Siddiqui et al., 1996; Kenward, 1998; Scharfstein et al., 1999;
Vella and Verbeek, 1999; Das, 2004; Wooldridge, 2005; Semykina and Wooldridge, 2010)
and pattern mixture models (e.g., Little, 1993; Kenward et al., 2003; Roy, 2003; Lin et al.,
2004; Roy and Daniels, 2008). These model-based methods have to make untestable and
typically strong assumptions about the attrition process, again because there is insufficient
information in the original sample alone to learn the missingness mechanism. It is therefore
prudent for analysts to examine how sensitive results are to different sets of assumptions
about attrition. We note that Rotnitzky et al. (1998) and Scharfstein et al. (1999) suggest
related sensitivity analyses for estimating equations with inverse probability weighting.

3. LEVERAGING REFRESHMENT SAMPLES

Refreshment samples are available in many panel studies, but the way refreshment sam-
ples are currently used with respect to panel attrition varies widely. Initially, refreshment
samples, as the name implies, were conceived as a way to directly replace units who had
dropped out (Ridder, 1992). The general idea of using survey or field substitutes to correct
for nonresponse dates to some of the earliest survey methods work (Kish and Hess, 1959).
Research has shown, however, that respondent substitutes are more likely to resemble
respondents rather than nonrespondents, potentially introducing bias without additional
adjustments (Lin and Schaeffer, 1995; Vehovar, 1999; Rubin and Zanutto, 2001; Dorsett,
2010). Also potentially problematic is when refreshment respondents are simply added to
the analysis to boost the sample size, while the attrition process of the original respondents
is disregarded (e.g., Wissen and Meurs, 1989; Heeringa, 1997; Thompson et al., 2006). In
recent years, however, it is most common to see refreshment samples used to diagnose
panel attrition characteristics in an attempt to justify an ignorable missingness assump-
tion or as the basis for discussion about potential bias in the results, without using them
for statistical correction of the bias (e.g., Frick et al., 2006; Kruse et al., 2009).

Refreshment samples are substantially more powerful than suggested by much of their
previous use. Refreshment samples can be mined for information about the attrition pro-
cess, which in turn facilitates adjustment of inferences for the missing data (Hirano et al.,
1998, 2001; Bartels, 1999). For example, the data can be used to construct inverse proba-
bility weights for the cases in the panel (Hirano et al., 1998; Nevo, 2003), an approach we
do not focus on here. They also offer information for model-based methods and multiple
imputation (Hirano et al., 1998), which we now describe and illustrate in detail.

3.1 Model-based approaches

Existing model-based methods for using refreshment samples (Hirano et al., 1998; Bhat-
tacharya, 2008) are based on selection models for the attrition process. To our knowledge,
no one has developed pattern mixture models in the context of refreshment samples; thus,
in what follows we only discuss selection models. To illustrate these approaches, we use the
simple example also presented by Hirano et al. (1998, 2001), which is illustrated graphically
in Figure 1. Consider a two wave panel of NP subjects that includes a refreshment sample
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Wave 1 Wave 2 

Observe ,  

Observe :  

 missing:  

 Observe ,  
(refreshment sample) 

Fig 1. Graphical representation of the two-wave model. Here, X represents variables available on everyone.

of NR new subjects during the second wave. Let Y1 and Y2 be binary responses potentially
available in wave 1 and wave 2, respectively. For the original panel, suppose that we know
Y1 for all NP subjects and that we know Y2 only for NCP < NP subjects due to attrition.
We also know Y2 for the NR units in the refreshment sample, but by design we do not
know Y1 for those units. Finally, for all i, let W1i = 1 if subject i would provide a value
for Y2 if they were included in wave 1, and let W1i = 0 if subject i would not provide a
value for Y2 if they were included in wave 1. We note that W1i is observed for all i in the
original panel but is missing for all i in the refreshment sample, since they were not given
the chance to respond in wave 1.

The concatenated data can be conceived as a partially observed, three-way contingency
table with eight cells. We can estimate the joint probabilities in four of these cells from the
observed data, namely P (Y1 = y1, Y2 = y2, W1 = 1) for y1, y2 ∈ {0, 1}. We also have the
following three independent constraints involving the cells not directly observed.

1 −
∑

y1,y2

P (Y1 = y1, Y2 = y2, W1 = 1) =
∑

y1,y2

P (Y1 = y1, Y2 = y2, W1 = 0)

P (Y1 = y1, W1 = 0) =
∑

y2

P (Y1 = y1, Y2 = y2, W1 = 0)

P (Y2 = y2) − P (Y2 = y2, W1 = 1) =
∑

y1

P (Y1 = y1, Y2 = y2, W1 = 0).
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Here, all quantities on the left hand side of the equations are estimable from the observed
data. The system of equations offers seven constraints for eight cells, so that we must add
one constraint to identify all the joint probabilities.

Hirano et al. (1998, 2001) suggest characterizing the joint distribution of (Y1, Y2, W1)
via a chain of conditional models, and incorporating the additional constraint within the
modeling framework. In this context, they suggested letting

Y1i ∼ Ber(π1i), logit(π1i) = β0(1)

Y2i|Y1i ∼ Ber(π2i), logit(π2i) = γ0 + γ1Y1i(2)

W1i|Y2i, Y1i ∼ Ber(πW1i
), logit(πW1i

) = α0 + αY1Y1i + αY2Y2i,(3)

for all i in the original panel and refreshment sample, plus requiring that all eight prob-
abilities sum to one. Hirano et al. (1998) call this an additive nonignorable (AN) model.
The AN model enforces the additional constraint by disallowing the interaction between
(Y1, Y2) in (3). Hirano et al. (1998) prove that the AN model is likelihood-identified for
general distributions. Fitting AN models is straightforward using Bayesian MCMC; see
Hirano et al. (1998) and Deng (2012) for exemplary Metropolis-within-Gibbs algorithms.
Parameters also can be estimated via equations of moments (Bhattacharya, 2008).

Special cases of the AN model are informative. By setting (αY2 = 0, αY1 6= 0), we
specify a model for a MAR missing data mechanism. Setting αY2 6= 0 implies a NMAR
missing data mechanism. In fact, setting (αY1 = 0, αY2 6= 0) results in the nonignorable
model of Hausman and Wise (1979). Hence, the AN model allows the data to determine
whether the missingness is MAR or NMAR, thereby allowing the analyst to avoid making
an untestable choice between the two mechanisms. By not forcing αY1 = 0, the AN model
permits more complex nonignorable selection mechanisms than the model of Hausman and
Wise (1979). The AN model does require separability of Y1 and Y2 in the selection model;
hence, if attrition depends on the interaction between Y1 and Y2, the AN model will not
fully correct for biases due to nonignorable attrition.

As empirical evidence of the potential of refreshment samples, we simulate 500 datasets
based on an extension of the model in (1) – (3) in which we add a Bernoulli-generated
covariate X to each model; that is, we add βXXi to the logit predictor in (1), γXXi to the
logit predictor in (2), and αXXi to the logit predictor in (3). In each we use NP = 10000
original panel cases and NR = 5000 refreshment sample cases. The parameter values, which
are displayed in Table 1, simulate a nonignorable missing data mechanism. All values of
(X, Y1, W1) are observed in the original panel, and all values of (X, Y2) are observed in
the refreshment sample. We estimate three models based on the data: the Hausman and
Wise (1979) model (set αY1 = 0 when fitting the models) which we denote with HW, a
MAR model (set αY2 = 0 when fitting the models), and an AN model. In each dataset,
we estimate posterior means and 95% central posterior intervals for each parameter using
a Metropolis-within-Gibbs sampler, running 10000 iterations (50% burn-in). We note that
interactions involving X also can be included and identified in the models, but we do not

7



Table 1

Summary of simulation study for the two wave example. Results include the average of the posterior means
across the 500 simulations, and the percentage of the 500 simulations in which the 95% central posterior

interval covers the true parameter value. The implied Monte Carlo standard error of the simulated
coverage rates is approximately

√

(.95)(.05)/500 = 1%.

Parameter True value HW MAR AN
Mean 95% Cov. Mean 95% Cov. Mean 95% Cov.

β0 .3 .29 96 .27 87 .30 97
βX -.4 -.39 95 -.39 95 -.40 96
γ0 .3 .44 30 .54 0 .30 98
γX -.3 -.35 94 -.39 70 -.30 99
γY1

.7 .69 91 .84 40 .70 95
α0 -.4 -.46 84 .25 0 -.40 97
αX 1 .96 93 .84 13 1.00 98
αY1

-.7 - - -.45 0 -.70 98
αY2

1.3 .75 0 - - 1.31 93

use them here.
For all models, the estimates of the intercept and coefficient in the logistic regression

of Y1 on X are reasonable, primarily because X is complete and Y1 is only MCAR in the
refreshment sample. As expected, the MAR model results in biased point estimates and
poorly calibrated intervals for the coefficients of the models for Y2 and W1. The HW model
fares somewhat better, but it still leads to severely biased point estimates and poorly
calibrated intervals for γ0 and αY2 . In contrast, the AN model results in approximately
unbiased point estimates with reasonably well-calibrated intervals.

We also ran simulation studies in which the data generation mechanisms satisfied the HW
and MAR models. When (αY1 = 0, αY2 6= 0), the HW model performs well and the MAR
model performs terribly, as expected. When (αY1 6= 0, αY2 = 0), the MAR model performs
well and the HW model performs terribly, also as expected. The AN model performs well
in both scenarios, resulting in approximately unbiased point estimates with reasonably
well-calibrated intervals.

To illustrate the role of the separability assumption, we repeat the simulation study after
including a non-zero interaction between Y1 and Y2 in the model for W1. Specifically, we
generate data according to a response model,

(4) logit(πW1i
) = α0 + αY1Y1i + αY2Y2i + αY1Y2Y1iY2i,

setting αY1Y2 = 1. However, we continue to use the AN model by forcing αY1Y2 = 0 when
estimating parameters. Table 2 summarizes the results of 100 simulation runs, showing
substantial biases in all parameters except (β0, βX , γX , αX). The estimates of (β0, βX)
are unaffected by using the wrong value for αY1Y2 , since all the information about the
relationship between X and Y1 is in the first wave of the panel. The estimates of γX and
αX are similarly unaffected because αY1Y2 involves only Y1 (and not X), which is controlled
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Table 2

Summary of simulation study for the two wave example without separability. The true selection model
includes a non-zero interaction between Y1 and Y2 (coefficient αY1Y2

= 1). We fit the AN model plus the
AN model adding the interaction term set at its true value. Results include the averages of the posterior

means and posterior standard errors across 100 simulations.

Parameter True value AN AN + αY1Y2

Mean S.E. Mean S.E.

β0 .3 .30 .03 .30 .03
βX -.4 -.41 .04 -.41 .04
γ0 .3 .14 .06 .30 .06
γX -.3 -.27 .06 -.30 .05
γY1

.7 .99 .07 .70 .06
α0 -.4 -.55 .08 -.41 .09
αX 1 .99 .08 1.01 .08
αY1

-.7 -.35 .05 -.70 .07
αY2

1.3 1.89 .13 1.31 .13
αY1Y2

1 - - 1 0

for in the regressions. Table 2 also displays the results when using (1), (2), and (4) with
αY1Y2 = 1; that is, we set αY1Y2 at its true value in the MCMC estimation and estimate
all other parameters. After accounting for separability, we are able to recover all true
parameter values.

Of course, in practice analysts do not know the true value of αY1Y2 . Analysts who wrongly
set αY1Y2 = 0, or any other incorrect value, can expect bias pattens like those in Table 2,
with magnitudes determined by how dissimilar the fixed αY1Y2 is from the true value.
However, the successful recovery of true parameter values when setting αY1Y2 at its correct
value suggests an approach for analyzing the sensitivity of inferences to the separability
assumption. Analysts can posit a set of plausible values for αY1Y2 , estimate the models
after fixing αY1Y2 at each value, and evaluate the inferences that result. Alternatively,
analysts might search for values of αY1Y2 that meaningfully alter substantive conclusions
of interest, and judge whether or not such αY1Y2 seem realistic. Key to this sensitivity
analysis is interpretation of αY1Y2 . In the context of the model above, αY1Y2 has a natural
interpretation in terms of odds ratios; for example, in our simulation, setting αY1Y2 = 1
implies that cases with (Y1 = 1, Y2 = 1) have exp(2.3) ≈ 10 times higher odds of responding
at wave 2 than cases with (Y1 = 1, Y2 = 0). In a sensitivity analysis, when this is too high
to seem realistic, we might consider models with values like αY1Y2 = .2. Estimates from the
AN model can serve as starting points to facilitate interpretations.

Although we presented models only for binary data, Hirano et al. (1998) prove that sim-
ilar models can be constructed for other data types; for example, they present an analysis
with a multivariate normal distribution for (Y1, Y2). Generally speaking, one proceeds by
specifying a joint model for the outcome (unconditional on W1), followed by a selection
model for W1 that maintains separation of Y1 and Y2.
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3.2 Multiple imputation approaches

One also can treat estimation with refreshment samples as a multiple imputation ex-
ercise, in which one creates a modest number of completed datasets to be analyzed with
complete-data methods. In multiple imputation, the basic idea is to simulate values for the
missing data repeatedly by sampling from predictive distributions of the missing values.
This creates m > 1 completed datasets that can be analyzed or, as relevant for many
statistical agencies, disseminated to the public. When the imputation models meet certain
conditions (Rubin, 1987, Chapter 4), analysts of the m completed datasets can obtain
valid inferences using complete-data statistical methods and software. Specifically, the an-
alyst computes point and variance estimates of interest with each dataset and combines
these estimates using simple formulas developed by Rubin (1987). These formulas serve to
propagate the uncertainty introduced by missing values through the analyst’s inferences.
Multiple imputation can be used for both MAR and NMAR missing data, although stan-
dard software routines primarily support MAR imputation schemes. Typical approaches to
multiple imputation presume either a joint model for all the data, such as a multivariate
normal or log-linear model (Schafer, 1997), or use approaches based on chained equations
(Van Buuren and Oudshoorn, 1999; Raghunathan et al., 2001). See Rubin (1996), Barnard
and Meng (1999), and Reiter and Raghunathan (2007) for reviews of multiple imputation.

Analysts can utilize the refreshment samples when implementing multiple imputation,
thereby realizing similar benefits as illustrated in Section 3.1. First, the analyst fits the
Bayesian models in (1) - (3) by running an MCMC algorithm for say H iterations. This
algorithm cycles between (i) taking draws of the missing values, i.e., Y2 in the panel and
(Y1, W1) in the refreshment sample, given parameter values and (ii) taking draws of the
parameters given completed data. After convergence of the chain, the analyst collects m of
these completed datasets for use in multiple imputation. These datasets should be spaced
sufficiently so as to be approximately independent, e.g., by thinning the H draws so that the
autocorrelations among parameters are close to zero. For analysts reluctant to run MCMC
algorithms, we suggest multiple imputation via chained equations with (Y1, Y2, W1) each
taking turns as the dependent variable. The conditional models should disallow interactions
(other than those involving X) to respect separability. This suggestion is based on our
experience with limited simulation studies, and we encourage further research into its
general validity. For the remainder of this article, we utilize the fully Bayesian MCMC
approach to implement multiple imputation.

Of course, analysts could disregard the refreshment samples entirely when implementing
multiple imputation. For example, analysts can estimate a MAR multiple imputation model
by forcing αY2 = 0 in (3) and using the original panel only. However, this model is exactly
equivalent to the MAR model used in Table 1 (although those results use both the panel and
the refreshment sample when estimating the model); hence, disregarding the refreshment
samples can engender the types of biases and poor coverage rates observed in Table 1.
On the other hand, using the refreshment samples allows the data to decide if MAR is
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appropriate or not in the manner described in Section 3.1.
In the context of refreshment samples and the example in Section 3.1, the analyst has two

options for implementing multiple imputation. The first, which we call the “P+R” option,
is to generate completed datasets that include all cases for the panel and refreshment
samples, e.g., impute the missing Y2 in the original panel and the missing (Y1, W1) in the
refreshment sample, thereby creating m completed datasets each with NP +NR cases. The
second, which we call the “P-only” option, is to generate completed datasets that include
only individuals from the initial panel, so that NP individuals are disseminated or used
for analysis. The estimation routines may require imputing (Y1, W1) for the refreshment
sample cases, but in the end only the imputed Y2 are added to the observed data from the
original panel for dissemination/analysis.

For the P+R option, the multiply-imputed datasets are byproducts when MCMC algo-
rithms are used to estimate the models. The P+R option offers no advantage for analysts
who would use the Bayesian model for inferences, since essentially it just reduces from H
draws to m draws for summarizing posterior distributions. However, it could be useful for
survey-weighted analyses, particularly when the concatenated file has weights that have
been revised to reflect (as best as possible) its representativeness. The analyst can apply
the multiple imputation methods of Rubin (1987) to the concatenated file.

Compared to the P+R option, the P-only option offers clearer potential benefits. Some
statistical agencies or data analysts may find it easier to disseminate or base inferences
on only the original panel after using the refreshment sample for imputing the missing
values due to attrition, since combining the original and freshened samples complicates
interpretation of sampling weights and design-based inference. For example, re-weighting
the concatenated data can be tricky with complex designs in the original and refreshment
sample. Alternatively, there may be times when a statistical agency or other data collector
may not want to share the refreshment data with outsiders, for example because doing so
would raise concerns over data confidentiality. Some analysts might be reluctant to rely on
the level of imputation in the P+R approach—for the refreshment sample, all Y1 must be
imputed. In contrast the P-only approach only leans on the imputation models for missing
Y2. Finally, some analysts simply may prefer the interpretation of longitudinal analyses
based on the original panel, especially in cases of multiple-wave designs.

In the P-only approach, the multiple imputation has a peculiar aspect: the refreshment
sample records used to estimate the imputation models are not used or available for analy-
ses. When records are used for imputation but not for analysis, Reiter (2008) showed that
Rubin’s (1987) variance estimator tends to have positive bias. The bias, which can be quite
severe, results from a mismatch in the conditioning used by the analyst and the imputer.
The derivation of Rubin’s (1987) variance estimator presumes that the analyst conditions
on all records used in the imputation models, not just the available data.

We now illustrate that this phenomenon also arises in the two-wave refreshment sample
context. To do so, we briefly review multiple imputation (Rubin, 1987). For l = 1, . . . , m,
let q(l) and u(l) be respectively the estimate of some population quantity Q and the esti-
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Table 3

Bias in multiple imputation variance estimator for P-only method. Results based on 500 simulations.

Parameter Q Avg. q̄∗ Var q̄∗ Avg. T∗ 95% Cov.

β0 .3 .30 .0008 .0008 95.4
βX -.4 -.40 .0016 .0016 95.8
γ0 .3 .30 .0018 .0034 99.2
γX -.3 -.30 .0022 .0031 98.4
γY1

.7 .70 .0031 .0032 96.4

mate of the variance of q(l) in completed dataset D(l). Analysts use q̄m =
∑m

l=1 q(l)/m
to estimate Q, and use Tm = (1 + 1/m)bm + ūm to estimate var(q̄m), where bm =
∑m

l=1(q
(l) − q̄m)2/(m − 1) and ūm =

∑m
l=1 u(l)/m. For large samples, inferences for Q

are obtained from the t-distribution, (q̄m −Q) ∼ tνm
(0, Tm), where the degrees of freedom

is νm = (m − 1) [1 + ūm/ ((1 + 1/m)bm)]2. A better degrees of freedom for small samples
is presented by Barnard and Rubin (1999). Tests of significance for multicomponent null
hypotheses are derived by Li et al. (1991a), Li et al. (1991b), Meng and Rubin (1992) and
Reiter (2007).

Table 3 summarizes the properties of the P-only multiple imputation inferences for the
AN model under the simulation design used for Table 1. We set m = 100, spacing out
samples of parameters from the MCMC so as to have approximately independent draws.
Results are based on 500 draws of observed datasets, each with new values of missing
data. As before, the multiple imputation results in approximately unbiased point estimates
of the coefficients in the models for Y1 and for Y2. For the coefficients in the regression
of Y2, the averages of Tm across the 500 replications tend to be significantly larger than
the actual variances, leading to conservative confidence interval coverage rates. Results for
the coefficients of Y1 are well-calibrated; of course, Y1 has no missing data in the P-only
approach.

We also investigated the two-stage multiple imputation approach of Reiter (2008). How-
ever, this resulted in some anti-conservative variance estimates, so that it was not preferred
to standard multiple imputation.

3.3 Comparing model-based and multiple imputation approaches

As in other missing data contexts, model-based and multiple imputation approaches
have differential advantages (Schafer, 1997). For any given model, model-based inferences
tend to be more efficient than multiple imputation inferences based on modest numbers of
completed datasets. On the other hand, multiple imputation can be more robust than fully
model-based approaches to poorly fitting models. Multiple imputation uses the posited
model only for completing missing values, whereas a fully model-based approach relies on
the model for the entire inference. For example, in the P-only approach, a poorly-specified
imputation model affects inference only through the (NP −NCP ) imputations for Y2. Speak-
ing loosely to offer intuition, if the model for Y2 is only 60% accurate (a poor model indeed)
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and (NP − NCP ) represents 30% of NP , inferences based on the multiple imputations will
be only 12% inaccurate. In contrast, the full model-based inference will be 40% inaccurate.
Computationally, multiple imputation has some advantages over model-based approaches,
in that analysts can use ad hoc imputation methods like chained equations (Van Buuren
and Oudshoorn, 1999; Raghunathan et al., 2001) that do not require MCMC.

Both the model-based and multiple imputation approaches, by definition, rely on models
for the data. Models that fail to describe the data could result in inaccurate inferences,
even when the separability assumption in the selection model is reasonable. Thus, regard-
less of the approach, it is prudent to check the fit of the models to the observed data.
Unfortunately, the literature on refreshment samples does not offer guidance on or present
examples of such diagnostics.

We suggest that analysts check models with predictive distributions (Meng, 1994; Gel-
man et al., 1996; He et al., 2010; Burgette and Reiter, 2010). In particular, the analyst can
use the estimated model to generate new values of Y2 for the complete cases in the original
panel and for the cases in the refreshment sample. The analyst compares the set of repli-
cated Y2 in each sample with the corresponding original Y2 on statistics of interest, such
as summaries of marginal distributions and coefficients in regressions of Y2 on observed
covariates. When the statistics from the replicated data and observed data are dissimilar,
the diagnostics indicate that the imputation model does not generate replicated data that
look like the complete data, suggesting that it may not describe adequately the relation-
ships involving Y2 or generate plausible values for the missing Y2. When the statistics are
similar, the diagnostics do not offer evidence of imputation model inadequacy (with respect
to those statistics). We recommend that analysts generate multiple sets of replicated data,
so as to ensure interpretations are not overly specific to particular replications.

These predictive checks can be graphical in nature, for example resembling grouped
residual plots for logistic regression models. Alternatively, as summaries analysts can com-
pute posterior predictive probabilities. Formally, let S be the statistic of interest, such as a
regression coefficient or marginal probability. Suppose the analyst has created T replicated
datasets, {R(l), . . . , R(T )}, where T is somewhat large (say T = 500). Let SD and SR(l) be
the values of S computed with an observed subsample D, e.g., the complete cases in the
panel or the refreshment sample, and R(l), respectively, where l = 1, . . . , T . For each S we
compute the two-sided posterior predictive probability,

ppp = (2/T ) ∗ min

(

T
∑

l=1

I(SD − SR(l) > 0),
T

∑

l=1

I(SR(l) − SD > 0)

)

.(5)

We note that ppp is small when SD and SR(l) consistently deviate from each other in one
direction, which would indicate that the model is systematically distorting the relationship
captured by S. For S with small ppp, it is prudent to examine the distribution of SR(l) −SD

to evaluate if the difference is practically important. We consider probabilities in the .05
range (or lower) as suggestive of lack of model fit.
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To obtain each R(l), analysts simply add a step to the MCMC that replaces all observed
values of Y2 using the parameter values at that iteration, conditional on observed values of
(X, Y1, W1). This step is used only to facilitate diagnostic checks; the estimation of param-
eters continues to be based on the observed Y2. When autocorrelations among parameters
are high, we recommend thinning the chain so that parameter draws are approximately
independent before creating the set of R(l). Further, we advise saving the T replicated
datasets, so that they can be used repeatedly with different S. We illustrate this process
of model checking in the analysis of the APYN data in Section 5.

4. THREE WAVE PANELS WITH TWO REFRESHMENTS

To date, model-based and multiple imputation methods have been developed and applied
in the context of two wave panel studies with one refreshment sample. However, many
panels exist for more than two waves, presenting the opportunity for fielding multiple
refreshment samples under different designs. In this section, we describe models for three
wave panels with two refreshment samples. These can be used as in Section 3.1 for model-
based inference or as in Section 3.2 to implement multiple imputation. Model identification
depends on (i) whether or not individuals from the original panel who did not respond in
the second wave, i.e., have W1i = 0, are given the opportunity to provide responses in
the third wave, and (ii) whether or not individuals from the first refreshment sample are
followed in the third wave.

To begin, we extend the example from Figure 1 to the case with no panel returns and
no refreshment follow-up, as illustrated in Figure 2. Let Y3 be binary responses potentially
available in wave 3. For the original panel, we know Y3 only for NCP2 < NCP subjects
due to third wave attrition. We also know Y3 for the NR2 units in the second refreshment
sample. By design, we do not know (Y1, Y3) for units in the first refreshment sample, nor
do we know (Y1, Y2) for units in the second refreshment sample. For all i, let W2i = 1 if
subject i would provide a value for Y3 if they were included in the second wave of data
collection (even if they would not respond in that wave), and let W2i = 0 if subject i would
not provide a value for Y3 if they were included in the second wave. In this design, W2i

is missing for all i in the original panel with W1i = 0 and for all i in both refreshment
samples.

There are 32 cells in the contingency table cross-tabulated from (Y1, Y2, Y3, W1, W2).
However, the observed data offer only sixteen constraints, obtained from the eight joint
probabilities when (W1 = 1, W2 = 1) and the following dependent equations (which can be
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Wave 1 Wave 2 Wave 3 

Observe ,  

Observe :  
Observe :  

 missing:  

 missing:   

 

Observe ,  
(refreshment sample) 

 

 Observe ,  
(refreshment sample) 

Fig 2. Graphical representation of the three-wave panel with monotone nonresponse and no follow-up for
subjects in refreshment samples. Here, X represents variables available on everyone and is displayed for
generality; there is no X in the example in Section 4.

alternatively specified). For all (y1, y2, y3, w1, w2), where y3, w1, w2 ∈ {0, 1}, we have

1 =
∑

y1,y2,y3,w,w2

P (Y1 = y1, Y2 = y2, Y3 = y3, W1 = w1, W2 = w2)

P (Y1 = y1, W1 = 0) =
∑

y2,y3,w2

P (Y1 = y1, Y2 = y2, Y3 = y3, W1 = 0, W2 = w2)

P (Y2 = y2) − P (Y2 = y2, W1 = 1) =
∑

y1,y3,w2

P (Y1 = y1, Y2 = y2, Y3 = y3, W1 = 0, W2 = w2)

P (Y1 = y1, Y2 = y2, W1 = 1, W2 = 0) =
∑

y3

P (Y1 = y1, Y2 = y2, Y3 = y3, W1 = 1, W2 = 0)

P (Y3 = y3) =
∑

y1,y2,w1,w2

P (Y1 = y1, Y2 = y2, Y3 = y3, W1 = w1, W2 = w2).

As before, all quantities on the left hand side of the equations are estimable from the
observed data. The first three equations are generalizations of those from the two-wave
model. One can show that the entire set of equations offers eight independent constraints,
so that we must add sixteen constraints to identify all the probabilities in the table.
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Following the strategy for two-wave models, we characterize the joint distribution of
(Y1, Y2, Y3, W1, W2) via a chain of conditional models. In particular, for all i in the original
panel and refreshment samples, we supplement the models in (1) – (3) with

Y3i | Y1i, Y2i, W1i ∼ Ber(π3i),(6)

logit(π3i) = β0 + β1Y1i + β2Y2i + β3Y1iY2i

W2i | Y1i, Y2i, W1i, Y3i ∼ Ber(πW2i),(7)

logit(πW2i) = δ0 + δ1Y1i + δ2Y2 + δ3Y3i + δ4Y1iY2i,

plus requiring that all 32 probabilities sum to one. We note that the saturated model—
which includes all eligible one-way, two-way, and three-way interactions—contains 31 pa-
rameters plus the sum-to-one requirement, whereas the just-identified model contains 15
parameters plus the sum-to-one requirement; thus, the needed 16 constraints are obtained
by fixing parameters in the saturated model to zero.

The sixteen removed terms from the saturated model include the interaction Y1Y2 from
the model for W1, all terms involving W1 from the model for Y3, and all terms involving
W1 or interactions with Y3 from the model for W2. We never observe W1 = 0 jointly with
Y3 or W2, so that the data cannot identify whether or not the distributions for Y3 or W2

depend on W1. We therefore require that Y3 and W2 be conditionally independent of W1.
With this assumption, the NCP cases with W1 = 1 and the second refreshment sample
can identify the interactions of Y1Y2 in (6) and (7). Essentially, the NCP cases with fully
observed (Y1, Y2) and the second refreshment sample considered in isolation are akin to a
two-wave panel sample with (Y1, Y2) and their interaction as the variables from the “first
wave” and Y3 as the variable from the “second wave.” As with the AN model, in this
pseudo-two-wave panel we can identify the main effect of Y3 in (7) but not interactions
involving Y3.

In some multi-wave panel studies, respondents who complete the first wave are invited
to complete all subsequent waves, even if they failed to complete a previous one. That
is, individuals with observed W1i = 0 can come back in future waves. For example, the
2008 ANES increased incentives to attriters to encourage them to return in later waves.
This scenario is illustrated in Figure 3. In such cases, the additional information offers the
potential to identify additional parameters from the saturated model. In particular, one
gains the dependent equations,

P (Y1 = y1, Y3 = y3, W1 = 0, W2 = 1) =
∑

y2

P (Y1 = y1, Y2 = y2, Y3 = y3, W1 = 0, W2 = 1),

for all (y1, y3). When combined with other equations, we now have 20 independent con-
straints. Thus, we can add four terms to the models in (6) and (7) and maintain identifica-
tion. These include two main effects for W1 and two interactions between W1 and Y1, all of
which are identified since we now observe some W2 and Y3 when W1 = 0. In contrast, the
interaction term Y2W1 is not identified, because Y2 is never observed with Y3 except when
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Fig 3. Graphical representation of the three-wave panel with return of wave 2 nonrespondents and no follow-
up for subjects in refreshment samples. Here, X represents variables available on everyone.

W1 = 1. Interaction terms involving Y3 also are not identified. This is intuitively seen by
supposing that no values of Y2 from the original panel were missing, so that effectively the
original panel plus the second refreshment sample can be viewed as a two wave setting in
which the AN assumption is required for Y3.

Thus far we have assumed only cross-sectional refreshment samples; however, refresh-
ment sample respondents could be followed in subsequent waves. Once again, the additional
information facilitates estimation of additional terms in the models. For example, consider
extending Figure 3 to include incomplete follow-up in wave three for units from the first
refreshment sample. Deng (2012) shows that the observed data offer 22 independent con-
straints, so that we can add six terms to (6) – (7). As before, these include two main effects
for W1 and two interactions for Y1W1. We also can add the two interactions for Y2W1. The
refreshment sample follow-up offers observations with Y2 and (Y3, W2) jointly observed,
which combined with the other data enables estimation of the one-way interactions. Alter-
natively, consider extending Figure 2 to include the incomplete follow-up in wave three for
units from the first refreshment sample. Here, Deng (2012) shows that the observed data
offer 20 independent constraints, and that one can add the two main effects for W1 and
two interactions for Y2W1 to (6) – (7).

17



Table 4

Campaign interest. Percentage choosing each response option across the panel waves (P1, P2, P3) and
refreshment samples (R2, R3). In P3, 83 nonrespondents from P2 returned to the survey. Five

participants with missing data in P1 were not used in the analysis.

P1 P2 P3 R2 R3

“A lot” 29.8 40.3 65.0 42.0 72.2
“Some” 48.6 44.3 25.9 43.3 20.3
“Not much” 15.3 10.8 5.80 10.2 5.0
“None at all” 6.1 4.4 2.90 3.6 1.9
Available sample size 2730 2316 1715 691 461

As in the two wave case (Hirano et al., 1998), we expect that similar models can be
constructed for other data types. We have done simulation experiments (not reported
here) that support this expectation.

5. ILLUSTRATIVE APPLICATION

To illustrate the use of refreshment samples in practice, we use data from the 2007-
2008 Associated Press-Yahoo! News Poll (APYN). The APYN is a one year, eleven-wave
survey with three refreshment samples intended to measure attitudes about the 2008 pres-
idential election and politics. The panel was sampled from the probability-based Knowl-
edgePanel(R) Internet panel, which recruits panel members via a probability-based sam-
pling method using known published sampling frames that cover 99% of the U.S. popula-
tion. Sampled non-internet households are provided a laptop computer or MSN TV unit
and free internet service.

The baseline (wave 1) of the APYN study was collected in November 2007, and the final
wave took place after the November 2008 general election. The baseline was fielded to a
sample of 3,548 adult citizens, of whom 2,735 responded, for a 77% cooperation rate. All
baseline respondents were invited to participate in each follow-up wave; hence, it is possible,
for example, to obtain a baseline respondent’s values in wave t + 1 even if they did not
participate in wave t. Cooperation rates in follow-up surveys varied from 69% to 87%, with
rates decreasing towards the end of the panel. Refreshment samples were collected during
follow-up waves in January, September, and October 2008. For illustration, we use only the
data collected in the baseline, January, and October waves, including the corresponding
refreshment samples. We assume nonresponse to the initial wave and to the refreshment
samples is ignorable and analyze only the available cases. The resulting dataset is akin to
Figure 3.

The focus of our application is on campaign interest, one of the strongest predictors
of democratic attitudes and behaviors (Prior, 2010) and a key measure for defining likely
voters in pre-election polls (Traugott and Tucker, 1984). Campaign interest also has been
shown to be correlated with panel attrition (Bartels, 1999; Olson and Witt, 2011). For our
analysis, we use an outcome variable derived from answers to the survey question, “How
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Table 5

Predictors used in all conditional models, denoted as X. Percentage of respondents in each category in
initial panel (P1) and refreshment samples (R2, R3).

Variable Definition P1 R2 R3

AGE1 = 1 for age 30-44, = 0 otherwise .28 .28 .21
AGE2 = 1 for age 45-59, = 0 otherwise .32 .31 .34
AGE3 = 1 for age above 60, = 0 otherwise .25 .28 .34
MALE = 1 for male, = 0 for female .45 .47 .43
COLLEGE = 1 for having college degree, = 0 otherwise .30 .33 .31
BLACK = 1 for African American, = 0 otherwise .08 .07 .07
INT = 1 for everyone (the intercept)

much thought, if any, have you given to candidates who may be running for president in
2008?” Table 4 summarizes the distribution of the answers in the three waves. Following
convention (e.g., The Pew Research Center, 2010), we dichotomize answers into people
most interested in the campaign and all others. We let Yti = 1 if subject i answers “A lot”
at time t and Yti = 0 otherwise, where t ∈ {1, 2, 3} for the baseline, January, and October
waves, respectively. We let Xi denote the vector of predictors summarized in Table 5.

We assume ignorable nonresponse in the initial wave and refreshment samples for con-
venience, as our primary goal is to illustrate the use and potential benefits of refreshment
samples. Unfortunately, we have little evidence in the data to support or refute that as-
sumption. We do not have access to X for the nonrespondents in the initial panel or
refreshment samples; thus, we cannot compare them to respondents’ X as a (partial) test
of an MCAR assumption. The respondents’ characteristics are reasonably similar across
the three samples—although the respondents in the second refreshment sample (R3) tend
to be somewhat older than other samples—which offers some comfort that, with respect
to demographics, these three samples are not subject to differential nonresponse bias.

As in Section 4, we estimate a series of logistic regressions. Here, we denote the 7 × 1
vectors of coefficients in front of the Xi with θ and subscripts indicating the dependent
variable; for example, θY1 represents the coefficients of X in the model for Y1. Suppressing
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conditioning, the series of models is

Y1i ∼ Bern

(

exp (θY1Xi)

1 + exp (θY1Xi)

)

Y2i ∼ Bern

(

exp (θY2Xi + γY1i)

1 + exp (θY2Xi + γY1i)

)

W1i ∼ Bern

(

exp (θW1Xi + α1Y1i + α2Y2i)

1 + exp (θW1Xi + α1Y1i + α2Y2i)

)

Y3i ∼ Bern

(

exp (θY3Xi + β1Y1i + β2Y2i + β3W1i + β4Y1iY2i + β5Y1iW1i)

1 + exp (θY3Xi + β1Y1i + β2Y2i + β3W1i + β4Y1iY2i + β5Y1iW1i)

)

W2i ∼ Bern

(

exp (θW2Xi + δ1Y1i + δ2Y2i + δ3Y3i + δ4W1i + δ5Y1iY2i + δ6Y1iW1i)

1 + exp (θW2Xi + δ1Y1i + δ2Y2i + δ3Y3i + δ4W1i + δ5Y1iY2i + δ6Y1iW1i)

)

.

We use noninformative prior distributions on all parameters. We estimate posterior distri-
butions of the parameters using a Metropolis-within-Gibbs algorithm, running the chain
for 200,000 iterations and treating the first 50% as burn-in. MCMC diagnostics suggested
that the chain converged. Running the MCMC for 200,000 iterations took approximately 3
hours on a standard desktop computer (Intel Core 2 Duo CPU 3.00GHz, 4GB RAM). We
developed the code in Matlab without making significant efforts to optimize the code. Of
course, running times could be significantly faster with higher-end machines and smarter
coding in a language like C++.

The identification conditions include no interaction between campaign interest in wave
1 and wave 2 when predicting attrition in wave 2, and no interaction between campaign
interest in wave 3 (as well as nonresponse in wave 2) and other variables when predicting
attrition in wave 3. These conditions are impossible to check from the sampled data alone,
but we cannot think of any scientific basis to reject them outright.

Table 6 summarizes the posterior distributions of the regression coefficients in each of the
models. Based on the model for W1, attrition in the second wave is reasonably described
as missing at random, since the coefficient of Y2 in that model is not significantly different
from zero. The model for W2 suggests that attrition in wave 3 is not missing at random. The
coefficient for Y3 indicates that participants who were strongly interested in the election
at wave 3 (holding all else constant) were more likely to drop out. Thus, a panel attrition
correction is needed to avoid making biased inferences.

This result contradicts conventional wisdom that politically-interested respondents are
less likely to attrite (Bartels, 1999). The discrepancy could result from differences in the
survey design of the APYN study compared to previous studies with attrition. For example,
the APYN study consisted of 10-15 minute online interviews, whereas the ANES panel
analyzed by Bartels (1999) and Olson and Witt (2011) consisted of 90-minute, face-to-face
interviews. The lengthy ANES interviews have been linked to significant panel conditioning
effects, in which respondents change their attitudes and behavior as a result of participation
in the panel (Bartels, 1999). In contrast, Kruse et al. (2009) finds few panel conditioning
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Table 6

Posterior means and 95% central intervals for coefficients in regressions. Column headers are the
dependent variable in the regressions.

Variable Y1 Y2 Y3 W1 W2

INT -1.60 -1.77 .04 1.64 - 1.40
(-1.94, -1.28) (-2.21, -1.32) (-1.26, 1.69) (1.17, 2.27) (-2.17, -.34)

AGE1 .25 .27 .03 -.08 .28
(-.12, .63) (-.13, .68) (-.40, .47) (-.52, .37) (-.07, .65)

AGE2 .75 .62 .15 .24 .27
(.40, 1.10) (.24, 1.02) (-.28, .57) (-.25, .72) (-.07, .64)

AGE3 1.26 .96 .88 .37 .41
(.91, 1.63) (.57, 1.37) (.41, 1.34) (-.14, .87) (.04, .80)

COLLEGE .11 .53 .57 .35 .58
(-.08, .31) (.31, .76) (.26, .86) (.04, .69) (.34, .84)

MALE -.05 -.02 -.02 .13 .08
(-.23, .13) (-.22, .18) (-.29, .24) (-.13, .39) (-.14, .29)

BLACK .75 -.02 .11 -.54 -.12
(.50, 1.00) (-.39, .35) (-.40, .64) (-.92, -.14) (-.47, .26)

Y1 — 2.49 1.94 .50 .88
— (2.24, 2.73) (.05, 3.79) (-.28, 1.16) (.20, 1.60)

Y2 — — 2.03 -.58 .27
— — (1.61, 2.50) (-1.92, .89) (-.13, .66)

W1 — — -.42 — 2.47
— — (-1.65, .69) — (2.07, 2.85)

Y1Y2 — — -.37 — -.07
— — (-1.18, .47) — (-.62, .48)

Y1W1 — — -.52 — -.62
— — ( -2.34, 1.30) — (-1.18, -.03)

Y3 — — — — -1.10
— — — — (-3.04, -.12)

effects in the APYN study. More notably, there was a differential incentive structure in the
APYN study. In later waves of the study, reluctant responders (those who took more than 7
days to respond in earlier waves) received increased monetary incentives to encourage their
participation. Other panelists and the refreshment sample respondents received a standard
incentive. Not surprisingly, the less interested respondents were more likely to have received
the bonus incentives, potentially increasing their retention rate to exceed that of the most
interested respondents. This possibility raises a broader question about the reasonableness
of assuming the initial nonresponse is ignorable, a point we return to in Section 6.

In terms of the campaign interest variables, the observed relationships with (Y1, Y2, Y3)
are consistent with previous research (Prior, 2010). Not surprisingly, the strongest pre-
dictor of interest in later waves is interest in previous waves. Older and college-educated
participants are more likely to be interested in the election. Like other analyses of the 2008
election (Lawless, 2009), and in contrast to many previous election cycles, we do not find
a significant gender gap in campaign interest.
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Table 7

Maximum likelihood estimates and 95% confidence intervals based for coefficients of predictors of Y3 using
m = 500 multiple imputations and only complete cases at final wave.

Variable Multiple Imputation Complete Cases

INT -.22 (-.80, .37) -.64 (-.98, -.31)
AGE1 -.03 (-.40, .34) .01 (-.36, .37)
AGE2 .08 (-.30, .46) .12 (-.25, .49)
AGE3 .74 (.31, 1.16) .76 (.36, 1.16)
COLLEGE .56 (.27, .86) .70 (.43, .96)
MALE -.09 (-.33, .14) -.08 (-.32, .16)
BLACK .07 (-.38, .52) .05 (-.43, .52)
Y1 1.39 (.87, 1.91) 1.45 (.95, 1.94)
Y2 2.00 (1.59, 2.40) 2.06 (1.67, 2.45)
Y1Y2 -.33 (-1.08, .42) -.36 (-1.12, .40)

We next illustrate the P-only approach with multiple imputation. We used the posterior
draws of parameters to create m = 500 completed datasets of the original panel only.
We thinned the chains until autocorrelations of the parameters were near zero to obtain
the parameter sets. We then estimated marginal probabilities of (Y2, Y3) and a logistic
regression for Y3 using maximum likelihood on only the 2730 original panel cases, obtaining
inferences via Rubin’s (1987) combining rules. For comparison, we estimated the same
quantities using only the 1632 complete cases, i.e., people who completed all three waves.

The estimated marginal probabilities reflect the results in Table 6. There is little dif-
ference in P (Y2 = 1) in the two analyses: the 95% confidence interval is (.38, .42) in the
complete cases and (.37, .46) in the full panel after multiple imputation. However, there
is a suggestion of attrition bias in P (Y3 = 1). The 95% confidence interval is (.63, .67)
in the complete cases and (.65, .76) in the full panel after multiple imputation. The esti-
mated P (Y3 = 1 | W2 = 0) = .78, suggesting that nonrespondents in the third wave were
substantially more interested in the campaign than respondents.

Table 7 displays the point estimates and 95% confidence intervals for the regression
coefficients for both analyses. The results from the two analyses are quite similar except
for the intercept, which is smaller after adjustment for attrition. The relationship between a
college education and political interest is somewhat attenuated after correcting for attrition,
although the confidence intervals in the two analyses overlap substantially. Thus, despite
an apparent attrition bias affecting the marginal distribution of political interest in wave
3, the coefficients for this particular complete-case analysis appear not to be degraded by
panel attrition.

Finally, we conclude the analysis with a diagnostic check of the three wave model follow-
ing the approach outlined in Section 3.3. To do so, we generate 500 independent replications
of (Y2, Y3) for each of the cells in Figure 3 containing observed responses. We then compare
the estimated probabilities for (Y2, Y3) in the replicated data to the corresponding prob-
abilities in the observed data, computing the value of ppp for each cell. We also estimate

22



Table 8

Posterior predictive probabilities (ppp) based on 500 replicated datasets and various observed-data
quantities. Results include probabilities for cells with observed data and coefficients in regression of Y3 on

several predictors estimated with complete cases in panel.

Quantity Value of ppp

Probabilities observable in original data
Pr(Y2 = 0) in the 1st refreshment sample .84
Pr(Y3 = 0) in the 2nd refreshment sample .40
Pr(Y2 = 0|W1 = 1) .90
Pr(Y3 = 0|W1 = 1, W2 = 1) .98
Pr(Y3 = 0|W1 = 0, W2 = 1) .93
Pr(Y2 = 0, Y3 = 0|W1 = 1, W2 = 1) .98
Pr(Y2 = 0, Y3 = 1|W1 = 1, W2 = 1) .87
Pr(Y2 = 1, Y3 = 0|W1 = 1, W2 = 1) .92

Coefficients in regression of Y3 on
INT .61
AGE1 .72
AGE2 .74
AGE3 .52
COLLEGE .89
MALE .76
BLACK .90
Y1 .89
Y2 .84
Y1Y2 .89

the regression from Table 7 with the replicated data using only the complete cases in the
panel, and compare coefficients from the replicated data to those estimated with the com-
plete cases in the panel. As shown in Table 8, the imputation models generate data that
are highly compatible with the observed data in the panel and the refreshment samples on
both the conditional probabilities and regression coefficients. Thus, from these diagnostic
checks we do not have evidence of lack of model fit.

6. CONCLUDING REMARKS

The APYN analyses, as well as the simulations, illustrate the benefits of refreshment
samples for diagnosing and adjusting for panel attrition bias. At the same time, it is impor-
tant to recognize that the approach alone does not address other sources of nonresponse
bias. In particular, we treated nonresponse in wave 1 and the refreshment samples as ignor-
able. Although this simplifying assumption is the usual practice in the attrition correction
literature (e.g., Hirano et al., 1998; Bhattacharya, 2008), it is worth questioning whether
it is defensible in particular settings. For example, suppose in the APYN survey that peo-
ple disinterested in the campaign chose not to respond to the refreshment samples, e.g.,
because people disinterested in the campaign were more likely to agree to take part in a
political survey one year out than one month out from the election. In such a scenario, the
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models would impute too many interested participants among the panel attriters, leading
to bias. Similar issues can arise with item nonresponse not due to attrition.

We are not aware of any published work in which nonignorable nonresponse in the initial
panel or refreshment samples is accounted for in inference. One potential path forward is
to break the nonresponse adjustments into multiple stages. For example, in stage one the
analyst imputes plausible values for the nonrespondents in the initial wave and refreshment
sample(s) using selection or pattern mixture models developed for cross-sectional data (see
Little and Rubin, 2002). These form a completed dataset except for attrition and missing-
ness by design, so that we are back in the setting that motivated Sections 3 and 4. In stage
two, the analyst estimates the appropriate AN model with the completed data to perform
multiple imputations for attrition (or to use model-based or survey-weighted inference).
The analyst can investigate the sensitivity of inferences to multiple assumptions about the
nonignorable missingness mechanisms in the initial wave and refreshment samples. This
approach is related to two stage multiple imputation (Shen, 2000; Rubin, 2003; Siddique
et al., 2012)

More generally, refreshment samples need to be representative of the population of in-
terest to be informative. In many contexts, this requires closed populations or, at least,
populations with characteristics that do not change over time in unobservable ways. For
example, the persistence effect in the APYN multiple imputation analysis (i.e., people in-
terested in earlier waves remain interested in later waves) would be attenuated if people
who are disinterested in the initial wave and would be so again in a later wave are dispropor-
tionately removed from the population after the first wave. Major population composition
changes are rare in most short-term national surveys like the APYN, although this could be
more consequential in panel surveys with a long time horizon or of specialized populations.

We presented model-based and multiple imputation approaches to utilizing the informa-
tion in refreshment samples. One also could use approaches based on inverse probability
weighting. We are not aware of any published research that thoroughly evaluates the merits
of the various approaches in refreshment sample contexts. The only comparison that we
identified was in Nevo (2003)—which weights the complete cases of the panel so that the
moments of the weighted data equal the moments in the refreshment sample—who briefly
mentions towards the end of his article that the results from the weighting approach and
the multiple imputation in Hirano et al. (1998) are similar. We note that Nevo (2003) too
has to make identification assumptions about interaction effects in the selection model.

It is important to emphasize that the combined data do not provide any information
about the interaction effects that we identify as necessary to exclude from the models. There
is no way around making assumptions about these effects. As we demonstrated, when the
assumptions are wrong, the additive nonignorable models could generate inaccurate results.
This limitation plagues model-based, multiple imputation, and re-weighting methods. The
advantage of including refreshment samples in data collection is that they allow one to make
fewer assumptions about the missing data mechanism than if only the original panel were
available. It is relatively straightforward to perform sensitivity analyses to this separability
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assumption in two wave settings with modest numbers of outcome variables; however, these
sensitivity analyses are likely to be cumbersome when many coefficients are set to zero in
the constraints, as is the case with multiple outcome variables or waves.

In sum, refreshment samples offer valuable information that can be used to adjust infer-
ences for nonignorable attrition or to create multiple imputations for secondary analysis.
We believe that many longitudinal datasets could benefit from the use of such samples,
although further practical development is needed including methodology for handling non-
ignorable unit and item nonresponse in the initial panel and refreshment samples, flexible
modeling strategies for high dimensional panel data, efficient methodologies for inverse
probability weighting and thorough comparisons of them to model-based and multiple im-
putation approaches, and methods for extending to more complex designs like multiple
waves between refreshment samples. We hope that this article encourages researchers to
work on these issues and data collectors to consider supplementing their longitudinal panels
with refreshment samples.
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