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Abstract

This article is aimed at practitioners who plan to use Bayesian inference on multiply-

imputed datasets in settings where posterior distributions of the parameters of interest

are not approximately Gaussian. We seek to steer practitioners away from a naive

approach to Bayesian inference, namely estimating the posterior distribution in each

completed dataset and averaging functionals of these distributions. We demonstrate

that this approach results in unreliable inferences. A better approach is to mix draws

from the posterior distributions from each completed dataset, and use the mixed draws

to summarize the posterior distribution. Using simulations, we show that for this

second approach to work well, the number of imputed datasets should be large. In

particular, five to ten imputed datasets—which is the standard recommendation for

multiple imputation—is generally not enough to result in reliable Bayesian inferences.
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1 INTRODUCTION

When some data values are missing, one approach to statistical inference is multiple im-

putation (Rubin, 1987; Reiter and Raghunathan, 2007). The basic idea is for the analyst

to fill in any missing values by repeatedly sampling from the predictive distributions of

the missing values. When the posterior distribution of the parameter of interest, or, for

likelihood-oriented statisticians, the sampling distribution of the complete-data estimator, is

approximately Gaussian, the analyst can obtain inferences by computing point and variance

estimates of interest with each dataset and combining these estimates using simple formulas.

These formulas serve to propagate the uncertainty introduced by imputation through the

analyst’s inferences.

When presuming normality of the posterior/sampling distribution is not justifiable, the

distribution is not adequately summarized by the mean and variance, so that Rubin’s (1987)

rules are not appropriate for inference. Nonetheless, some practitioners continue to use

Rubin’s (1987) rules even when they are theoretically invalid. For example, in a literature

review of applications of multiple imputation involving parameters not adequately modeled

with normal distributions, Marshall et al. (2009) find that, “Rubin’s rules without applying

any transformations were the standard approach used, when any method was stated.” They

go on to cite several examples where Rubin’s (1987) rules are used to estimate functionals

of distributions, such as percentiles of survival distributions.
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When normality is not justifiable, Bayesian approaches are viable options for inference. In

multiple imputation contexts, the analyst must appropriately utilize the information from the

multiple datasets in the inferences; again, simply applying Rubin’s (1987) rules to posterior

means and variances is generally not correct. An approach suggested by Gelman et al. (2004,

p. 520) is (i) simulate many draws from the posterior distribution in each imputed dataset,

and (ii) mix all the draws. The mixed draws approximate the posterior distribution. Gelman

et al. (2004) do not evaluate the properties of this approximation, nor do the prominent texts

on multiple imputation of Schafer (1997) and Little and Rubin (2002).

In this article, we examine the approximation of Gelman et al. (2004, p. 520) using

simulation studies. We find that the approach works well with large numbers of multiply-

imputed datasets. However, the usual advice for multiple imputation for modest fractions of

missing data—that five or ten completed datasets are adequate for inferences—can result in

unreliable estimates of posterior distributions. We also point out the pitfalls of incorrectly

using Rubin’s (1987) rules on functionals of posterior distributions. Specifically, we examine

an approach akin to some of those observed by Marshall et al. (2009): (i) estimate posterior

quantiles in each completed dataset, and (ii) average them across the datasets. We argue

and demonstrate that this approach produces unreliable estimates of posterior distributions.

2 DESCRIPTION OF THE APPROACHES

In this section, we motivate the approach of Gelman et al. (2004, p. 520). We begin with

brief reviews of Bayesian inference with incomplete data and of multiple imputation. Let
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Yinc = (Yobs, Ymis) be the n× p matrix of data values for n units, where Yobs is the portion of

Yinc that is observed, and Ymis is the portion of Yinc that is missing. Let Q be a parameter

of interest, for example a regression coefficient. Let Qα be the value of Q such that

∫ Qα

−∞

f(Q|Yobs)dQ =

∫ Qα

−∞

∫
Ymis

f(Q|Yobs, Ymis)f(Ymis|Yobs)dYmisdQ = α, (1)

where α is a desired quantile of the posterior distribution of Q. Analysts can approximate

this integral with Monte Carlo methods. First, draw Ymis from its posterior predictive

distribution. Second, draw a value of Q from its posterior distribution, given the drawn

Ymis. Third, repeat these two steps K times, where K is very large. Fourth, sort the K

simulated values of Q, and select the (αK)th element of the sorted list. The result is an

estimate for Qα.

In multiple imputation, the analyst creates m completed datasets, D(l) = (Yobs, Y
(l)
mis)

where 1 ≤ l ≤ m, which are used for analysis. Here, Y
(l)
mis is a draw from the posterior

predictive distribution of (Ymis | Yobs), or from an approximation of that distribution such

as the approach of Raghunathan et al. (2001).

Typically, m is much smaller than K would be for Bayesian inference for non-Gaussian

distributions. Thus, with small m, drawing one value of Q for each D(l) results in too few

draws of Q to get reasonable estimates of Qα. Instead, we can utilize each completed dataset

for more than just one draw of Q. To motivate this, we re-express the integral in (1) as

α = lim
m→∞

1

m

m∑
l=1

∫ Qα

−∞

f(Q|Yobs, Y
(l)
mis)dQ. (2)

This suggests that, for any value of Q in the upper limit of the integral, we can find the

associated cumulative probability by (i) sampling J values of Q in each D(l), where J is
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large, (ii) finding the percentage of the J draws in each D(l) less than the upper limit value,

and (iii) averaging those percentages across all m datasets, where m → ∞. Equivalently,

the analyst could mix all of the sampled draws from each dataset, and find the percentage

of elements less than the upper limit in the combined draws. This process can be easily

adapted to find Qα: try different upper limits until one reaches the desired α probability.

The approximation of Gelman et al. (2004, p. 520), which we denote as Q̃α, is essentially

an approximation of (2) for finite m. Specifically, for each D(l) where l = 1, . . . , m, the

analyst simulates J values of Q from f(Q|D(l)), where J is large. Let f̂(Q(l)) represent the

J draws of Q obtained with D(l). The analyst mixes all f̂(Q(l)) together to create f̂(Qall).

The analyst sorts the mJ draws in f̂(Qall), and the α(mJ)th element of the sorted list is

the estimate of Qα.

We now use simulations to illustrate the properties of Q̃α. We also use the simulations

to emphasize that the naive approach of averaging posterior quantiles can produce poor

estimates of Qα in comparison to Q̃α. To fix notation for the naive approach, let Q
(l)
α be the

value of Q in D(l) such that
∫ Q

(l)
α

−∞
f(Q|Yobs, Y

(l)
mis)dQ = α. Then, Q̄α =

∑m

l=1 Q
(l)
α /m. Clearly,

Q̄α has nothing to do with (2). It is derived from convenience rather than theory.

3 ILLUSTRATIVE SIMULATIONS

The complete data, Yinc, comprise n = 50 values generated independently from Bernoulli

trials with π = .2. We introduce missing data by randomly deleting 10%, 30% or 50% of the

data completely at random (Rubin, 1976). We use multiple imputation to generate m = 5,
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m = 20, or m = 100 completed datasets. We seek Qα, where α ∈ {.025, .25, .75, .975}, for

the posterior distribution of π. We generate Yinc and multiple imputations 5000 times to

approximate the sampling distributions of Q̃α and Q̄α.

To create each completed dataset, we first sample a value of π from the appropriate Beta

distribution based on Yobs. We use a uniform prior distribution for π. We then draw Ymis

from a Bernoulli distribution using the sampled π. After the imputation steps, in each D(l)

we draw J = 10000 values of π from Beta(
∑

(Yobs +Y
(l)
mis)+1, n−

∑
(Yobs +Y

(l)
mis)+1), which

is the posterior computed with D(l). To get Q̃α, we mix and sort the mJ draws of π, and

select the α(mJ)th element. To get Q̄α, we compute the α-quantile in each D(l) and average

them across the m datasets.

Figure 1 shows the distributions of Q̃α − Qα and Q̄α − Qα for α ∈ {.025, .25} across the

5000 replications with m = 100. Here, Qα is computed from f(π|Yobs). For each scenario,

Q̃α is nearly centered on Qα. There do not appear to be any trends with the percentage of

missing data, apart from the expected increase in variability as the percentage of missing

data increases. However, in additional simulations with m = 5 and m = 20, typically

Q̃α > Qα for small α, and Q̃α < Qα for large α. This is evident in Figure 2, which shows

that when m = 5 and to a lesser extent when m = 20, the posterior intervals based on Q̃α

tend to be tighter than warranted for modest m. This problem disappears when m = 100.

The inaccuracy when m = 5 merits closer inspection, because often practitioners only

create five multiple imputations for analysis. Across all missing data scenarios, the median

lengths of the 50% and 95% posterior intervals are smaller when m = 5 than when m = 100.
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Put another way, analysts appear to obtain sharper inferences by using five imputations than

using one hundred imputations. This does not imply that analysts should use small m for

Bayesian inference after multiple imputation; on the contrary, it implies that approximations

Q̃α based on small m are not reliable. Hence, analysts planning on Bayesian inference after

multiple imputation should generate a large number of completed datasets.

What about Q̄α? As evident in Figure 1, Q̄α can differ substantially from Qα, and its

performance worsens as the percentage of missing values increases. More often than not,

Q̄α > Qα for small α, and Q̄α < Qα for large α. Hence, as also evident in Figure 2, analysts

who construct posterior intervals based on Q̄α tend to have tighter ranges than warranted.

What is wrong with the naive approach of averaging posterior quantiles? Each Q
(l)
α is a

summary of the posterior distribution of Q estimated as if D(l) was in fact genuine data with

n records. However, the observed data comprise fewer than n records, so that the actual

posterior distribution of Q is more dispersed than the complete-data posterior distribution.

Thus, each Q
(l)
α is biased towards the median, and so is their average.

4 APPLICATION TO BIOASSAY DATA

To illustrate Bayesian inference after multiple imputation on genuine data, we modify data

from a bioassay experiment that appears in Gelman et al. (2004, p. 88–93), who took them

from Racine et al. (1986). The data comprise two measurements on n = 20 animals. Let

xi be the natural logarithm of the dose of a chemical compound administered to animal i,

where xi ∈ {−.86,−.30,−.05, .73}. There were five animals at each dose level. Let yi = 1 if
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Figure 1: Box plots of Q̄α−Qα and Q̃α −Qα in different settings with n = 50, m = 100, and

10%, 30%, or 50% missing data. The first three plots in each panel are for Q̄α − Qα, and

the second three plots in each panel are for Q̃α −Qα. The labels on the horizontal axis show

the percentage of missing data. Generally, Q̄α is substantially different than Qα, whereas

Q̃α estimates Qα reasonably well.

animal i dies shortly after receiving the dose, and let yi = 0 otherwise. There are no missing

data in the study. Therefore, we deleted a randomly selected 20% of the yi values.

The goal of the analysis is to learn about the toxicity of the compound, which we do

with a logistic regression of Y on X. Because of the small sample size, it is doubtful that

the sampling distributions of the estimated regression coefficients are well-approximated by

normal distributions. Following Gelman et al. (2004), we therefore use a Bayesian logistic

regression model to learn about the toxicity of the compound, so that yi|πi ∼ Bernoulli(πi)

where logit(πi) = β0 + β1xi. We use the non-informative prior distribution f(β0, β1) ∝ 1.
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The primary targets of scientific interest are the posterior distributions of β0 and β1.

To multiply-impute the four missing values, we first draw a value of (β0, β1) from its

approximate posterior distribution using grid sampling. We substitute the drawn values into

the equation for πi for each of the four animals with missing data. We then draw values of

Ymis from each animal’s Bernoulli distribution to create the completed dataset, D(l), where

l = 1, . . . , m. We examine three scenarios: m = 5, m = 20, and m = 100.

For each D(l), we determine quantiles of f(β0, β1|D
(l)) by using grid sampling again. We

sample J = 10, 000 values from the joint distribution for each completed dataset. By mixing

the mJ draws of (β0, β1), we can compute values of Q̃α.

Table 1 displays several quantiles for β0 and β1. When m = 100, the values of Q̃α are

close to the corresponding values of Qα. As expected, the differences between Q̃α and Qα

are largest when m = 5. For both β0 and β1, the posterior intervals are too narrow when

m = 5. The Table also displays estimates based on Q̄α. Once again, they are less reliable

than those based on Q̃α.

To see if the results in Table 1 for m = 5 are unusual, we repeated the posterior simulation

100 times. In 57% of these replications, Q̃.975 − Q̃.025 for β1 with m = 5 was shorter than

Q.975−Q.025 for β1 from the observed data; roughly the same trend held for the interquartile

range for β1 and for the intervals involving β0. The lengths of the one hundred Q̃.975 − Q̃.025

for β1 with m = 5 ranged from 15.8 (1.5 to 17.3) to 21.4 (3.0 to 24.4), as compared to a length

of 19.5 for Q.975 − Q.025. Thus, there are substantial chances of estimating inappropriately

short posterior intervals with Q̃.975 − Q̃.025, although the risks appear to be random rather
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than systematic. Given the potential for overstating accuracy, we would be reluctant to

recommend or use m = 5 for this analysis.

We also repeated the analysis using an imputation model that differs from the analysis

model. Specifically, for imputations we assume that f(yij) ∼ Bernoulli(πj) in each of the

j = 1, . . . , 4 dosage strata. The results show the themes seen in Table 1.

5 CLOSING REMARKS

As both multiple imputation and Bayesian inference grow in popularity, we anticipate that

practitioners will commonly use Bayesian inference after multiple imputation. We hope that

this article reduces the number of practitioners who naively and incorrectly average posterior

quantiles and other functionals, and encourages practitioners to use the approach of Gelman

et al. (2004, p. 520) with large m.
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Figure 2: Box plots of differences in lengths of the approximate and true 50% and 95%

posterior intervals with n = 50. The labels on the horizontal axis show the percentage of

missing data followed by the value of m, where 1 represents m = 5, 2 represents m = 20,

and 3 represents m = 100. The intervals based on Q̃α (top panel) are relatively poor

approximations for modest m but good for large m. The intervals based on Q̄α (bottom

panel) are always unreliable.
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Q̃α for MI with Q̄α for MI with

Qα m = 5 m = 20 m = 100 m = 5 m = 20 m = 100

Posterior quantiles for β0

α =.025 -1.72 -1.87 -1.72 -1.77 -1.53 -1.21 -1.33

α =.25 -0.39 -0.60 -0.35 -0.38 -0.37 -0.08 -0.20

α =.75 1.12 0.70 1.20 1.16 0.88 1.22 1.06

α =.975 2.84 2.14 3.00 2.97 2.26 2.71 2.50

95% interval length 4.56 4.01 4.72 4.74 3.79 3.92 3.83

Posterior quantiles for β1

α =.025 2.37 2.62 2.73 2.24 2.55 2.75 2.65

α =.25 5.47 5.58 5.84 5.29 5.46 5.98 5.69

α =.75 11.73 11.56 12.27 11.69 11.21 12.31 11.68

α =.975 21.82 21.08 22.52 21.88 20.33 22.01 20.98

95% interval length 19.45 18.46 19.79 19.64 17.78 19.26 18.33

Table 1: Quantile estimates for the bioassay data from one set of multiple imputations using

m = 5, m = 20, and m = 100. The imputation model is the same as the analysis model.

Here, Qα is estimated with the observed data. Inferences based on Q̃α are reliable with

m = 100 but less so with m = 5 or m = 20. Inferences based on Q̃α are generally unreliable.
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