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Abstract

In typical implementations of multiple imputation for missing data, analysts createm completed data sets

based on approximately independent draws of imputation model parameters. We use theoretical arguments and

simulations to show that, providedm is large, the use of independent draws is not necessary. In fact, appropri-

ate use of dependent draws can improve precision relative tothe use of independent draws. It also eliminates

the sometimes difficult task of obtaining independent draws; for example, in fully Bayesian imputation models

based on MCMC, analysts can avoid the search for a subsampling interval that ensures approximately indepen-

dent draws for all parameters. We illustrate the use of dependent draws in multiple imputation with a study of

the effect of breast feeding on children’s later cognitive abilities.
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1 Introduction

Multiple imputation (Rubin, 1987) is a widely used approach for handling missingdata. The basic idea is to fill

in missing values withm > 1 draws from predictive distributions, resulting inm completed data sets that can be

analyzed or shared with others. When the imputation models meet certain conditions (Rubin, 1987, Chapter 4),

analysts of them completed data sets can make valid inferences using complete-data statistical methods and soft-

ware. Specifically, the analyst computes point and variance estimates of interest with each data set and combines

these estimates using simple formulas (Rubin, 1987). These formulas serve topropagate the uncertainty introduced

by imputation through the analyst’s inferences. See Rubin (1996), Barnard and Meng (1999), and Harel and Zhou

(2007) for reviews of multiple imputation.
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Typical approaches to multiple imputation presume either a joint model for all the data, such as a multivariate

normal or log-linear model (Schafer, 1997), or use approaches based on chained equations (Van Buuren and Oud-

shoorn, 1999; Raghunathanet al., 2001). With either approach, usually it is recommended that completed data

sets be generated from approximately independent draws of the imputation model parameters (e.g., Schafer, 1997;

Sinharayet al., 2001; Whiteet al., 2011). Indeed, as we document later, this is the default procedure in most, if not

all, popular multiple imputation software routines. This recommendation stems from Rubin (1987), who assumes

independent draws when deriving the methods for multiple imputation inference. Independent draws allow for

straightforward and valid inferences with modestm. This is essential for Rubin’s (1987) motivating application

for multiple imputation: a statistical agency sharing completed data files with the public. In those days and even

today, agencies considering multiple imputation prefer to release only modest numbers of data sets (m ≤ 20) to

simplify secondary analysts’ work and reduce storage needs.

More than 25 years later, the uses of multiple imputation have extended far beyond handling nonresponse in

public use data (Reiter and Raghunathan, 2007), including purposes for which inconvenience does not present a

real barrier to creating and using largem, such as when analysts do not intend to share data outside their research

team. Indeed, recently researchers have recommended that analysts withflexibility generate larger numbers of

completed data sets (saym ≈ 50), so as to reduce variances and stabilize estimates (Grahamet al., 2007; White

et al., 2011). These recommendations continue to insist that imputations be based on approximately independent

parameter draws.

In this article, we revisit the need for independent parameter draws whengenerating completed data sets in

multiple imputation. Our examination is motivated by the following observations and questions. First, most

(proper) multiple imputation procedures generate large numbers of completeddata sets that are sparsely sampled to

ensure independent draws. Might throwing out these already-generated, completed data sets to gain independence

needlessly sacrifice inferential accuracy? Second, when imputation models involve many parameters, it can be

time consuming and difficult to find a subsampling interval that ensures approximately independent draws for all

parameters. Indeed, these decisions often are buried inside multiple imputationsoftware routines so that analysts

actually cannot check if the sampled parameter draws are approximately independent. Is this process and reliance

on black-box routines for guessing at independence necessary, orcan it be avoided by using all completed data

sets?

To offer insight on these questions, we investigate theoretical implications and perform several simulation

studies of using dependent parameter draws in multiple imputation. The results suggest that, whenm is large and

parameter values are sampled from their posterior distributions, valid multiple imputation inferences can be ob-
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tained from dependent draws using the formulas of Rubin (1987). In fact, one even can gain efficiency, particularly

when the effective sample size of the dependent parameter draws exceeds the number of independent draws that

would be otherwise used for multiple imputation. Importantly, these findings do not hold whenm is too small;

here, dependent draws can lead to underestimation of multiple imputation variances and below nominal confidence

interval coverage rates (for the typical case of positively correlated parameter draws).

The remainder of the article is organized as follows. In Section 2, we reviewthe theory of multiple imputation

and discuss the role of independent draws. In Section 3, we present the results of simulation studies and theoretical

arguments suggesting when independence is necessary and when it is not. In Section 4, we show how these issues

can matter in practice with a multiple imputation analysis of data on the effects of breast feeding on children’s

cognitive development. In Section 5, we offer some final remarks about the implications of our findings.

2 Review of Multiple Imputation Inferences

To describe multiple imputation, we use notation that closely follows the presentation in Si and Reiter (2011). Let

Yinc = (Yobs, Ymis) be then×p matrix of data for then units included in some sample;Yobs is the portion ofYinc

that is observed, andYmis is the portion ofYinc that is missing. We assume arbitrary patterns of missing data, e.g.,

the same variables can be present in bothYobs andYmis. Here, for simplicity, we ignore variables related to the

sampling design, although these should be accounted for in imputation models (Reiteret al., 2006). The analyst fills

in values forYmis with draws from the posterior predictive distribution of(Ymis|Yobs) or from approximations to

that distribution such as the sequential regression approach of Raghunathanet al. (2001). These draws are repeated

m times to obtainm completed data sets,D(l) = (Yobs, Y(l)
mis) wherel = 1, ..., m. Let S(m) = (D(1), ..., D(m)).

In standard practice, eachD(l) is generated from approximately independent draws of imputation model pa-

rameters. For imputations based on data augmentation for fully Bayesian models,these draws can be obtained

from converged MCMC chains by (i) subsamplingm values spaced so that autocorrelations among all parameters

in successive draws are near zero or (ii) taking the final completed data set from each ofm converged chains started

at independently generated values. For example, PROC MI in SAS, which uses a multivariate normal model for

imputation, offers analysts both options, with a default of sampling from one long chain with a subsampling inter-

val of 100. This interval can be modified by the user. A version of the second strategy is typically used to sample

completed data sets with (not fully Bayesian) chained equations approaches. For example, the software MICE in

R and Stata saves the last completed data set in each ofm independently initiated rounds of sequential imputation,

where each round hasc > 1 iterations through the chained equations. The software IVEWARE for SASuses a
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similar strategy. We note that all of these methods throw away potentially many completed data sets in the process

of obtaining samples from approximately independent parameter draws.

From thesem completed data sets, the analyst seeks inferences about some estimandQ, for example a popu-

lation mean or regression coefficient. In eachD(l), the analyst estimatesQ with some estimator̂q and the variance

of q̂ with some estimator̂u. For l = 1, . . . , m, let q(l) andu(l) be respectively the values ofq̂ andû in D(l). The

following quantities are needed for inferences:

q̄m =
m

∑

l=1

q(l)/m (1)

ūm =
m

∑

l=1

u(l)/m (2)

bm =

m
∑

l=1

(q(l) − q̄m)2/(m − 1). (3)

The analyst uses̄qm to estimateQ andTm = (1 + 1/m)bm + ūm to estimate Var(Q|S(m)). Inferences are based

on thet-distribution,(Q− q̄m) ∼ tνm
(0, Tm), with νm = (m− 1)(1 + ūm/((1 + 1/m)bm))2 degrees of freedom,

mean zero, and squared scale parameterTm.

The rationale for using independent parameter draws is evident in Rubin’s (1987) derivations of these inferen-

tial methods. To see this, letQinc andUinc be the approximately unbiased point estimate (posterior mean) ofQ

and its (posterior) variance ifYinc was available. Assuming noninformative prior distributions for all parameters

as in Rubin (1987), we have

E(Q|Yobs) = E(E(Q|Yobs,Ymis)|Yobs) = E(Qinc|Yobs) (4)

V ar(Q|Yobs) = V ar(E(Q|Yobs,Ymis)|Yobs) + E(V ar(Q|Yobs,Ymis)|Yobs)

= V ar(Qinc|Yobs) + E(Uinc|Yobs). (5)

As suggested by Rubin (1987, p. 85), analysts can simulate (4) and (5) by sampling values ofQinc andUinc

from their posterior distribution,f(Qinc, Uinc|Yobs). In particular, suppose that each(q(l), u(l)) is a draw from the

posterior distribution of(Qinc, Uinc). Then, following Rubin (1987), we havēq∞ = lim q̄m = E(Qinc|Yobs) as

m → ∞; ū∞ = lim ūm = E(Uinc|Yobs) asm → ∞; and,b∞ = lim bm = V ar(Qinc|Yobs) asm → ∞. Thus,

for largen, we can use a normal approximation for inferences aboutQ,

(Q|q̄∞, b∞, ū∞) ∼ N(q̄∞, b∞ + ū∞). (6)
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Rubin (1987) further presumes that each(q(l), u(l)) are independently distributed according to

(q(l)|q̄∞, b∞) ∼ N(q̄∞, b∞) (7)

(u(l)|ū∞) ∼ (ū∞, << b∞) (8)

where the notationx ∼ (y, << z) in (8) means thatx has meany and variance much less thanz.

Assuming noninformative prior distributions for all parameters, this independence implies that

(q̄∞|q̄m, b∞) ∼ N(q̄m, b∞/m) (9)

((m − 1)bm/b∞|bm) ∼ χ2
m−1 (10)

(ū∞ | ūm) ∼ (ūm, << b∞/m). (11)

Thus, from (6) and (9) we have

(Q|S(m), b∞, ū∞) ∼ N(q̄m, (1 + 1/m)b∞ + ū∞). (12)

From (11), one can replacēu∞ with ūm so that

(Q|S(m), b∞) ∼ N(q̄m, (1 + 1/m)b∞ + ūm). (13)

Thet-approximation tof(Q|S(m)) follows from (10) and (13), with degrees of freedom obtained by matching the

first two moments of the posterior distribution of(νmTm/((1+1/m)b∞ + ūm)|S(m)) to those of aχ2 distribution

with νm degrees of freedom.

3 Theoretical Considerations and Simulations With Dependent Draws

For modestm, assuming independence in (7) is necessary to ensure thatbm is an unbiased estimate ofb∞, which

in turn is necessary to substitutebm for b∞ in the variance in (13). However, and crucially for our argument, for

largem Rubin’s (1987) simulation approach does not require independent draws of Qinc. Rather, it requires that

analysts use simulation to construct consistent estimates of the expectation in (4) and variance in (5), which can be

done with dependent draws. This is akin to summarizing a posterior distributionfrom a full (i.e., not thinned) scan

of parameter draws generated from an MCMC algorithm: for long chains, the sample mean and sample variance
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of the dependent parameter draws are consistent estimates of the posterior mean and posterior variance (Tierney,

1994). In fact, the analogy is precise for fully Bayesian imputation models estimated via MCMC, sinceQinc is an

unknown parameter with a posterior distribution.

Formally, and assuming a fully Bayesian imputation procedure, suppose thatwe have a set ofm dependent

draws of(q(l), u(l)) derived from a MCMC algorithm that has converged to the limiting distribution,f(Qinc, Uinc |

Yobs). We note that such convergence also is assumed when using independent draws. By the ergodic theorem,q̄m

is consistent forE(Qinc | S
(m)), ūm is consistent forE(Uinc | S

(m)), andbm is consistent forV ar(Qinc|Yobs).

Thus, for largen and infinitem, we can continue to base inferences on (6), even with dependent draws.

Because all(q(l), u(l)) are not jointly independent, we cannot assume (9) through (11), hencenor (13). How-

ever, for sufficiently largem and a converged MCMC sampler, it is reasonable to assume that the Monte Carlo

errors in the sampled moments(q̄m, ūm, bm) are inconsequential as proportions ofb∞ + ū∞; that is, we assume

q̄m ≈ q̄∞, ūm ≈ ū∞, andbm ≈ b∞. With this assumption, we can replace (6) with

(Q|S(m)) ∼ N(q̄m, bm + ūm), (14)

which can be used directly for inferences. We note that whenm is large, the usual multiple imputation reference

distribution,(Q − q̄m) ∼ tνm
(0, Tm), is essentially equivalent to (14), sincebm is generally modest for typical

amounts of missing information. This approximate equivalence offers analysts the convenience of using existing

software routines for multiple imputation inferences, even with dependent draws.

This argument suggests that it is sensible to use all the completed data sets generated during the data augmen-

tation steps in fully Bayesian imputation models. Can it be advantageous? To approach this question, we again

turn to the literature on MCMC. In particular, Geyer (1992) and MacEachern and Berliner (1994) show that using

the full set of parameter draws sampled in a converged MCMC (after tossing out the burn-in) generally results in

more precise summaries of posterior distributions, including posterior means and variances, than using only draws

from subsamples of the full chain. Further, using all samples gets aroundthe difficulties of choosing a subsampling

interval. Hence, in addition to being feasible, using all completed data sets offers potential benefits.

To illustrate the validity and potential benefits of multiple imputation with many dependent draws, we turn

to a simple simulation scenario. We generate 10000 data sets, each comprisingn = 1000 observations and two
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variables distributed as

y1i ∼ N(0, 1) (15)

y2i ∼ Bernoulli(πi), πi =
e1+2y1i

1 + e1+2y1i

. (16)

Let ri = 1 if y2i is missing, and letri = 0 otherwise. In each complete data set, we randomly generate missing

values fory2 by independently sampling from Bernoulli distributions with

p(ri = 1) =
e−.5+.5y1i

1 + e−.5+.5y1i

. (17)

In any data set, this generates about 40% missing values iny2 under a missing at random mechanism (Rubin,

1976).

We implement multiple imputation of missingy2 using a Bayesian logistic regression,

y2i ∼ Bern(pi), log(
pi

1 − pi

) = β0 + β1y1i (18)

with independent, diffuse priors forβ0 and β1. We perform the data augmentation by (i) sampling values of

(β0, β1) conditional on a current version ofYinc and (ii) sampling values ofYmis conditional on a current version

of (β0, β1). To sample from the full conditional distribution of(β0, β1), we use a standard Metropolis step with

two independentN(0, .025) as a proposal distribution. Across the 10000 data sets, this results in roughly a 39%

acceptance rate. Trace plots of parameters suggest convergence generally with 2500 consecutive draws. Autocor-

relations among all parameters die down after lag 30. We implement three multiple imputation scenarios:m = 10

independent draws,m = 50 independent draws, and allm = 2500 dependent draws.

In each data set, we estimateE(y2), β0, andβ1 using maximum likelihood estimation, which we then feed

into Rubin’s (1987) multiple imputation inferences. Table 1 summarizes the simulated coverage rates and average

lengths of 95% confidence intervals across the 10000 replications. For all parameters, the coverage rates when

usingm = 2500 dependent draws are well-calibrated, as is also the case for the independent draws. Generally,

the intervals based onm = 2500 dependent draws have similar properties as those based onm = 50 independent

draws, with a suggestion of very slight gains in precision due to the largerm. Compared tom = 10 independent

draws, however, using the largerm with dependent draws offers roughly 3% reduction in interval length. This

reduction comes essentially for free, since for any replication we alreadygenerate the 2500 data sets when running

the MCMC.
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Dependent Independent
Estimand m = 2500 m = 50 m = 10

E(y2) 94.80 (.068) 94.72 (.069) 94.73 (.070)
β0 95.21 (.477) 94.39 (.481) 94.86 (.497)
β1 94.79 (.659) 94.76 (.663) 94.47 (.683)

Table 1: Results of simulation study of multiple imputation based on large number of dependent draws. Entries in
the table are the percentage of the 95% confidence intervals that cover thetrue parameter and, in parentheses, the
average length of the 95% confidence interval. All numbers based on 10000 replications.

Estimand Consecutive Independent
m = 10 m = 25 m = 50 m = 50

E(y2) 93.55 93.90 94.56 94.72
.00023, .00006 .00023, .00007 .00023, .00007 .00023, .00008

β0 91.53 92.88 93.82 95.39
.00888, .0042 .00888, .0049 .00888, .0053 .00887, .0060

β1 91.75 92.76 93.58 94.76
.01809, .0071 .01808, .0082 .01808, .0090 .01807, .0103

Table 2: Results of simulation study of multiple imputation based on small numbers of dependent draws. Entries
in the table are the percentage of the 95% confidence intervals that cover the true parameter followed on the next
line by, in order, the average values ofūm andbm. All numbers based on 10000 replications.

While the results in Table 1 suggest that dependent draws can be used for multiple imputation, we emphasize

thatm must be large for this to be the case. In particular, dependent draws from MCMC may not offer reliable

estimates for small numbers of dependent samples, since the consistency results depend on largem. To illustrate

this empirically, we repeat the simulation from Table 1 but now use consecutive draws taken from the chain after

convergence. We consider three cases with consecutive samples, namely m ∈ {10, 25, 50}. Table 2 summarizes

the simulated coverage rates along with the average values of(ūm, bm) across 10000 replications. The results based

on m = 50 independent draws from Table 1 are shown as a baseline. Using a too small number of consecutive

dependent draws results in coverage rates below the nominal 95%. This isnot due to underestimation of̄um: for

any parameter, its expectation is nearly identical across all cases. Rather, as evident in Table 2,bm is the culprit.

It tends to underestimateb∞ with too small a number of dependent draws, with increasing bias asm gets smaller.

This is not surprising, since the positive autocorrelation among consecutive draws generally reduces the variance

of consecutive sets ofq(l).

The empirical results confirm that analysts planning to use dependent draws from an MCMC must ensure a

sufficiently large number of them, so that the completed data quantities in (1) – (3) closely estimate(q̄∞, ū∞, b∞).

To assess this convergence and, hence, if (14) is plausible for a particular set ofm dependent samples, one useful

and convenient indicator is the effective sample size (ESS) ofq̄∞. This can be computed with them values ofq(l)

using standard routines, for example with thecoda package in R. Intuitively, if them values ofq(l) have a small
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Consecutive Subsampled
Estimand m = 2500 m = 500 m = 500 m = 100

E(y2) 94.80 (.068) 94.91 (.068) 94.96 (.068) 94.96 (.069)
Avg. ESS 482 116 324 79

β0 95.21 (.477) 95.19 (.476) 95.30 (.478) 95.27 (.478)
Avg. ESS 353 89 264 67

β1 94.79 (.659) 94.68 (.658) 94.79 (.659) 94.64 (.660)
Avg. ESS 312 81 241 63

Table 3: Results of simulation study of multiple imputation based on dependent draws with varying effective
sample sizes. Entries in the table are the percentage of the 95% confidence intervals that cover the true parameter;
in parentheses, the average length of the 95% confidence interval; and,on the next line the average effective sample
size (ESS) of the point estimates. All numbers based on 10000 replications.

ESS, we cannot count on the correspondingq̄m being close tōq∞, norbm being close tob∞. In the simulations in

Table (2), the average ESS of all parameters are between 27 and 30 when m = 50, and between 21 and 23 when

m = 25; these are quite small values. In contrast, the average ESS in the simulations inTable 1 whenm = 2500

all exceed 300.

As a rule of thumb for basing multiple imputation inferences on dependent draws, we suggest that analysts

require the minimumESS ≥ 100 for all q̄∞ of interest. Using (7) and (10) withm = ESS as (very) rough

approximations to the sampling distributions ofq̄m andbm, this would imply a standard error of1/
√

100 ≈ 10%

of b∞ when approximatinḡq∞ with q̄m; this is typically a small number. Similarly, withESS = 100 we expect

the ratiobm/b∞ to have a standard error of
√

2/99 ≈ 14%. Whenb∞ is modest compared tōu∞, which is usually

the case in missing data settings, the approximation error inbm typically should be small compared tob∞ + ū∞.

To explore this further, we consider three additional scenarios that usethe simulation runs from Table 1 with

2500 draws. First, we select samples ofm = 500 consecutive draws to represent a case with smaller ESS than the

m = 2500 scans and larger ESS than them = 50 scans. Second and third, we thin the resulting500 and original

2500 length scans by keeping every fifth draw, resulting in samples ofm = 100 and (thinned)m = 500 draws. The

thinned scans have reduced autocorrelations, thus representing additional ESS for comparison. Table 3 summarizes

key results over the 10000 simulation runs. Even with a minimum ESS in the neighborhood of 60 or 80, the 95%

confidence intervals are well-calibrated. Taken together with the undercoverage in the(m ≤ 50, max(ESS) ≤ 30)

scans from Table 2, the results are in reasonable accord with the proposed rule of thumb.

The simulation studies involve fairly simple models with smallp for computational convenience; running

MCMC samplers until convergence in repeated sampling studies can be computationally expensive. Since the theo-

retical arguments in support of using dependent draws do not dependonp or particular distributional assumptions—

as long as posterior distributions of the quantities of interest are approximately Gaussian—we expect the overall
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trends in the simulations to hold for other settings. However, with more complex data, analysts are likely to require

a largerm to ensure convergence of the MCMC sampler and sufficient effective sample size.

We also repeat the simulation from Table 1 withn = 100. Results exhibit the same pattern: using a large

number of dependent draws offers efficiency gains. For too smalln, however, (6) may not hold due to failure

of the normal approximation. In this case, Barnard and Rubin (1999) show that multiple imputation inference

with independent draws should be based on(Q − q̄m) ∼ tv̂m
(0, Tm), where v̂m = (1/vm + 1/vobs)

−1 and

vobs is an estimate of the observed-data degrees of freedom. Following similar logicas the large-n case, we can

substitute consistent estimates of(ū∞, b∞) from dependent draws in the expressions for(vm, vobs). For largem,

we conjecture that doing so can generate efficiency gains over using independent draws.

4 Multiple Imputation in Breastfeeding Study

We now apply multiple imputation with dependent draws to handle missing data in a study of the effect of breast-

feeding on children’s later cognitive development. These data were previously used by Mitra and Reiter (2011,

2012) to develop methods for propensity score matching with multiply-imputed data. Our description of the data

closely follows their presentation, although we do not employ matching techniques here.

The data comprise a subset of the National Longitudinal Survey of Youth (NLSY). This survey began in 1979

with a nationally representative sample of 12686 young men and women in the U.S. aged 14 to 22 years at that

time. This cohort was interviewed annually until 1994 and biannually afterwards. After 1986, the NLSY collected

detailed information on children born to women in the study. These children represent the unit of analysis for our

application. We include only first born children to avoid complications due to birth order and family nesting. In

addition, we discard 307 children with missing breastfeeding duration and children born before 1979. The resulting

data set comprises 3748 children, of whom 1306 have completely observed data.

We seek to estimate a linear regression of Peabody individual assessmenttest math scores (PIATM), which is

administered to children ages 5 or 6, on fifteen covariates. These include five categorical variables: the child’s race

(Hispanic, black, or other), the mother’s race (Hispanic, black, Asian,white, Hawaiian/Pacific Islander/American

Indian, or other), child’s sex, and two variables indicating the presenceof a spouse/partner or grandparents at birth.

We categorize three of the ten continuous variables: mother’s weeks of work in the previous year (worked0 weeks,

worked less than48 weeks, worked no less than48 and less than52 weeks, and worked52 weeks), weeks preterm

at birth (0 weeks preterm, less than5 weeks preterm,5 or more weeks preterm), and weeks of breastfeeding (less

than24 weeks of breastfeeding, at least24 weeks of breastfeeding). The remaining seven continuous variables
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include the number of years between 1979 and when the mother gave birth, mother’s intelligence as measured by

an armed forces qualification test, mother’s highest educational attainment, child’s birth weight, the number of

days that the child spent in hospital, the number of days that the mother spentin hospital, and family income. The

full set of variables, along with fraction of missing values in each, is reported in Table 4.

We implement multiple imputation with theR software package “mix,” which can be freely downloaded at

http://sites.stat.psu.edu/~jls/misoftwa.html. This uses a general location model (Schafer,

1997) for imputation, which is a joint model in which the categorical variables follow a log-linear model and the

continuous variables (after transformation) follow multivariate normal distributions with common variance and

means given by linear functions of the categorical variables. Specifically, in the log-linear model we include all

main effects plus two interactions (mother’s and child’s race, and presence of spouses and grandparents) suggested

by exploratory data analyses. Following Mitra and Reiter (2011), we applyBox-Cox transformations to several

of the continuous variables to improve normality assumptions. These transformations are used both for multiple

imputation and for the linear regression model. In the multivariate normal models,we include main effects for all

levels of the categorical variables in the regression for the mean. We generate 5000 completed data sets using the

built-in MCMC routines in “mix,” derived from them = 5000 dependent draws. The minimum effective sample

size of q̄5000 across all coefficients is 1274. We also obtain repeated realizations of (approximately) independent

draws by subsampling 500 sets ofm = 10 completed data sets via systematic sampling, leaving a gap of 500 draws

between successive data sets.

Table 4 displays the point estimates and interval lengths for the case withm = 5000 dependent draws, as well

as the corresponding average and standard deviation of interval lengths across the 500 sets ofm = 10 independent

draws. For any estimand, by designq̄5000 =
∑500

h=1 q̄
(h)
10 /500 whereh indexes a set of ten completed data sets.

Although not shown here, each̄um hardly varies across imputation scenarios, as expected. Further, we see that

b5000 approximately equals the average of the 500 sets ofb10, again as expected since MCMC theory suggests that

b5000 converges tob∞ (andb10 is an unbiased estimator ofb∞). However, using smallerm to ensure independent

draws has a cost: the intervals based on the independent draws are longer than those based on dependent draws.

Moreover, usingm = 10 results in additional instability in inferences, as can be seen in the standard deviations of

the interval lengths in Table 4. For example, the 95% confidence interval length for the coefficient of the logarithm

of family income (+.5) plausibly could be less than 1.0 in one set ofm = 10 completed data sets and more than 1.4

in another set. With̄qm values expected to be centered on .67, this variability could result in intervalscontaining

(or nearly containing) zero for some sets and not close to containing zeroin other sets.

Finally, although not shown here, results based on systematic subsamples with m = 100 approximately inde-
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Avg. CI Length (SD)
Estimand % missing q̄m m = 5000 m = 10

Intercept — 79.32 13.24 14.04 (1.83)
Mother’s race - black .9 1.76 10.90 11.43 (1.41)
Mother’s race - Asian .9 4.90 13.80 14.69 (2.12)
Mother’s race - white .9 3.26 6.35 6.61 (.77)
Mother’s race - Hawaiian/PI/American Indian .9 2.79 7.43 7.73 (.82)
Mother’s race - other .9 1.50 7.07 7.35 (.82)
Child’s race - black 0 -2.08 10.62 11.14 (1.36)
Child’s race - other 0 .45 5.89 6.13 (.71)
Child’s sex - female 0 .91 1.97 2.05 (.21)
Spouse/partner present at birth 4.2 .99 4.55 4.76 (.60)
Spouse/partner not know about child until after birth 4.2 .78 3.24 3.40 (.41)
Grandparents in house 1 yr. before birth - Yes 4.1 -.98 3.26 3.42 (.41)
Weeks mother worked in yr. before birth - 1-48 weeks 23.5 .70 3.24 3.45 (.54)
Weeks mother worked in yr. before birth - 49-51 weeks 23.5 .59 4.12 4.37 (.68)
Weeks mother worked in yr. before birth - 52 weeks 23.5 1.89 3.69 3.92 (.59)
Weeks preterm - 1-4 weeks 4.8 .98 2.70 2.81 (.31)
Weeks preterm - >5 weeks 4.8 .91 6.59 6.87 (.84)
Breastfeeding at least 24 weeks - Yes 0 1.09 2.84 2.95 (.31)
Sq. root(mother’s age - mother’s age in 1979) 0 -.40 1.33 1.41 (.19)
Sq. root(mother’s AFQT score) 4.9 1.15 .65 .68 (.08)
Child’s birth weight 1.4 .01 .06 .06 (.01)
Log(number of days child spent in hospital+.5) 6.6 -1.34 3.01 3.12 (.33)
Log(number of days mother spent in hospital+.5) 6.8 .08 3.29 3.40 (.35)
Mother’s attained education 4.3 .49 .63 .65 (.08)
Log(family income+.5) 24.6 .67 1.08 1.18 (.21)

Table 4: Regression coefficient estimates and 95% confidence interval lengths after multiple imputation with one
set ofm = 5000 dependent draws, and the corresponding averages and standard deviations for 500 disjoint sets of
m = 10 independent draws. The response variable PIATM has 36% missing values.

pendent draws closely resemble the results from them = 5000 dependent draws.

5 Concluding Remarks

For multiple imputation based on Bayesian joint models, the theoretical and simulationresults indicate that analysts

can obtain valid inferences using dependent draws, provided thatm is large. Largem is often available in such

settings, because analysts using MCMC typically run (multiple) long chains to ensure convergence. There can

be advantages to using dependent draws, as analysts can avoid the taskof identifying appropriate subsampling

intervals and possibly increase accuracy by using largerm. Of course, analysts always can run the chain long

enough to ensure a large number of independent draws after appropriate subsampling, in which case the inferences

from dependent and independent draws likely will be very similar. Therealso can be disadvantages to using many
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dependent draws when each completed data analysis is computationally expensive. The cost in terms of timeliness

and computing resource usage from repeating the completed data analysis many times could outweigh the benefits

from using the dependent draws.

As a practical guideline, we recommend that analysts estimate the amount of time and computing resources

needed per completed data analysis with a trial run based on a modest-sized subsample of the completed data

sets from the converged MCMC sampler. The analyst then can project a value ofm for which computation costs

are acceptable, and determine if the effective sample size is large enough at that m. Our simulations required

a minimum effective sample size of at least 50 for valid inferences with dependent draws, but to be safe we

recommend minimum effective samples sizes of at least 100 (along with careful checking that the MCMC sampler

has converged). If using all completed data sets from the converged chain is too expensive, analysts can use

subsamples of completed data sets. We generally expectm draws from a thinned chain to yield higher effective

sample sizes thanm consecutive draws.

The theoretical arguments of Section 3, based on ergodic theorems for MCMC, do not automatically apply for

approximations to full Bayesian models like chained equations. Although theseapproaches mimic Gibbs samplers,

the collection of conditional models may not actually correspond to a proper joint distribution (Liuet al., 2012).

Nonetheless, since chained equations approaches have been shown empirically to perform comparably to proper

Bayesian imputation models, at least for relatively straightforward modeling tasks (Van Buurenet al., 2006), we

conjecture that using dependent draws, i.e., using more than the final completed data set in each cycle of iterations,

should offer similar advantages.

References

Barnard, J. and Meng, X. (1999). Applications of multiple imputation in medicalstudies: From AIDS to NHANES.

Statistical Methods in Medical Research 8, 17–36.

Barnard, J. and Rubin, D. B. (1999). Small-sample degrees of freedom with multiple-imputation.Biometrika 86,

948–955.

Geyer, C. (1992). Practical Markoc chain Monte Carlo.Statistical Science 7, 473–483.

Graham, J., Olchowski, A., and Gilreath, T. (2007). How many imputations arereally needed? Some practical

clarifications of multiple imputation theory.Prevention Science 8, 206–213.

13



Harel, O. and Zhou, X. H. (2007). Multiple imputation: review of theory, implementation and software.Statistics

in Medicine 26, 3057–3077.

Liu, J., Gelman, A., Hill, J., and Su, Y. S. (2012). On the stationary distributionof iterative imputations

(arxiv.org/abs/1012.2902v2). Tech. rep., Department of Statistics, Columbia University.

MacEachern, S. N. and Berliner, L. M. (1994). Subsampling the Gibbs sampler. The American Statistician 488,

188–190.

Mitra, R. and Reiter, J. P. (2011). Estimating propensity scores with missing covariate data using general location

mixture models.Statistics in Medicine 30, 6, 627–641.

Mitra, R. and Reiter, J. P. (2012). A comparison of two methods of estimating propensity scores after multiple

imputation.Statistical Methods in Medical Research (online early).

Raghunathan, T. E., Lepkowski, J. M., van Hoewyk, J., and Solenberger, P. (2001). A multivariate technique for

multiply imputing missing values using a series of regression models.Survey Methodology 27, 85–96.

Reiter, J. P. and Raghunathan, T. E. (2007). The multiple adaptations of multiple imputation. Journal of the

American Statistical Association 102, 1462–1471.

Reiter, J. P., Raghunathan, T. E., and Kinney, S. K. (2006). The importance of modeling the survey design in

multiple imputation for missing data.Survey Methodology 32, 143–150.

Rubin, D. B. (1976). Inference and missing data (with discussion).Biometrika 63, 581–592.

Rubin, D. B. (1987).Multiple Imputation for Nonresponse in Surveys. New York: John Wiley & Sons.

Rubin, D. B. (1996). Multiple imputation after 18+ years.Journal of the American Statistical Association 91,

473–489.

Schafer, J. L. (1997).Analysis of Incomplete Multivariate Data. London: Chapman & Hall.

Si, Y. and Reiter, J. P. (2011). A comparison of posterior simulation and inference by combining rules for multiple

imputation.Journal of Statistical Theory and Practice 5, 335–347.

Sinharay, S., Stern, H., and Russell, D. (2001). The use of multiple imputationfor the analysis of missing data.

Psychological Methods 6, 317–329.

14



Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion).Annals of Statistics 22,

1701–1762.

Van Buuren, S., Brand, J. P. L., Groothuis-Oudshoorn, C. G. M., andRubin, D. B. (2006). Fully conditional

specification in multivariate imputation.Journal of Statistical Computation and Simulation 76, 1049–1064.

Van Buuren, S. and Oudshoorn, C. (1999). Flexible multivariate imputationby MICE. Tech. rep., Leiden: TNO

Preventie en Gezondheid, TNO/VGZ/PG 99.054.

White, I. R., Royston, P., and Wood, A. M. (2011). Multiple imputation using chained equations: Issues and

guidance for practice.Statistics in Medicine 30, 4, 377–399.

15


