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Abstract

In typical implementations of multiple imputation for misg data, analysts create completed data sets
based on approximately independent draws of imputationefiuattameters. We use theoretical arguments and
simulations to show that, provided is large, the use of independent draws is not necessaryctrefapropri-
ate use of dependent draws can improve precision relatitleetose of independent draws. It also eliminates
the sometimes difficult task of obtaining independent drdarsexample, in fully Bayesian imputation models
based on MCMC, analysts can avoid the search for a subsamiptarval that ensures approximately indepen-

dent draws for all parameters. We illustrate the use of dég@ndraws in multiple imputation with a study of
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1 Introduction

Multiple imputation (Rubin, 1987) is a widely used approach for handling missittg. The basic idea is to fill
in missing values withn > 1 draws from predictive distributions, resultingsm completed data sets that can be
analyzed or shared with others. When the imputation models meet certain cosdRobin, 1987, Chapter 4),
analysts of then completed data sets can make valid inferences using complete-data statisticalsreett soft-
ware. Specifically, the analyst computes point and variance estimatesresintgth each data set and combines
these estimates using simple formulas (Rubin, 1987). These formulas sprepagate the uncertainty introduced
by imputation through the analyst’s inferences. See Rubin (1996), Bbamal Meng (1999), and Harel and Zhou

(2007) for reviews of multiple imputation.
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Typical approaches to multiple imputation presume either a joint model for allattae slich as a multivariate
normal or log-linear model (Schafer, 1997), or use approachesllmaschained equations (Van Buuren and Oud-
shoorn, 1999; Raghunathahal., 2001). With either approach, usually it is recommended that completed data
sets be generated from approximately independent draws of the imputatiteh pamameters (e.g., Schafer, 1997;
Sinharayet al., 2001; Whiteet al., 2011). Indeed, as we document later, this is the default proceduresin ifmoot
all, popular multiple imputation software routines. This recommendation stems fuiim R1987), who assumes
independent draws when deriving the methods for multiple imputation infereimdependent draws allow for
straightforward and valid inferences with modest This is essential for Rubin’s (1987) motivating application
for multiple imputation: a statistical agency sharing completed data files with the puiblicose days and even
today, agencies considering multiple imputation prefer to release only madebiens of data setsn < 20) to
simplify secondary analysts’ work and reduce storage needs.

More than 25 years later, the uses of multiple imputation have extended famdépndling nonresponse in
public use data (Reiter and Raghunathan, 2007), including purpoasesiith inconvenience does not present a
real barrier to creating and using large such as when analysts do not intend to share data outside their research
team. Indeed, recently researchers have recommended that analysfiexiliility generate larger numbers of
completed data sets (say =~ 50), so as to reduce variances and stabilize estimates (Gretham2007; White
et al., 2011). These recommendations continue to insist that imputations be baapgroximately independent
parameter draws.

In this article, we revisit the need for independent parameter draws géregrating completed data sets in
multiple imputation. Our examination is motivated by the following observations aedtigms. First, most
(proper) multiple imputation procedures generate large numbers of compégtesets that are sparsely sampled to
ensure independent draws. Might throwing out these already-gtexeicompleted data sets to gain independence
needlessly sacrifice inferential accuracy? Second, when imputationlsriodelve many parameters, it can be
time consuming and difficult to find a subsampling interval that ensures @pmately independent draws for all
parameters. Indeed, these decisions often are buried inside multiple impusiatioare routines so that analysts
actually cannot check if the sampled parameter draws are approximatgbeirdint. Is this process and reliance
on black-box routines for guessing at independence necessargnat be avoided by using all completed data
sets?

To offer insight on these questions, we investigate theoretical implicaticthgariorm several simulation
studies of using dependent parameter draws in multiple imputation. The resygsss that, whem is large and

parameter values are sampled from their posterior distributions, valid multiplgatiguinferences can be ob-



tained from dependent draws using the formulas of Rubin (1987)ctndae even can gain efficiency, particularly
when the effective sample size of the dependent parameter drawsiexbeenumber of independent draws that
would be otherwise used for multiple imputation. Importantly, these findings tdbaid whenm is too small;
here, dependent draws can lead to underestimation of multiple imputationoesiand below nominal confidence
interval coverage rates (for the typical case of positively correladeampeter draws).

The remainder of the article is organized as follows. In Section 2, we rdhietheory of multiple imputation
and discuss the role of independent draws. In Section 3, we presaesilits of simulation studies and theoretical
arguments suggesting when independence is necessary and wher.itiisSection 4, we show how these issues
can matter in practice with a multiple imputation analysis of data on the effects aftbesaling on children’s

cognitive development. In Section 5, we offer some final remarks abeurplications of our findings.

2 Review of Multiple Imputation Inferences

To describe multiple imputation, we use notation that closely follows the preseniat® and Reiter (2011). Let
Yine = (Yobs, Ymis) be then x p matrix of data for the: units included in some sampl¥€,; is the portion ofY ;.

that is observed, and,,,;; is the portion ofY ;,,. that is missing. We assume arbitrary patterns of missing data, e.g.,
the same variables can be present in both andY ,.;s. Here, for simplicity, we ignore variables related to the
sampling design, although these should be accounted for in imputation modiés €Ral., 2006). The analyst fills

in values forY ;s with draws from the posterior predictive distribution(&f,,.;s|Y os) Or from approximations to
that distribution such as the sequential regression approach of Retghoet al. (2001). These draws are repeated
m times to obtainn completed data set®®) = (Y ., Y. ) wherel = 1,...,m. LetS(™ = (DM, ... D(™),

In standard practice, ead’) is generated from approximately independent draws of imputation model pa-
rameters. For imputations based on data augmentation for fully Bayesian mibésks,draws can be obtained
from converged MCMC chains by (i) subsamplingvalues spaced so that autocorrelations among all parameters
in successive draws are near zero or (ii) taking the final completedetdtas each ofn converged chains started
at independently generated values. For example, PROC MI in SAS, wheshaimultivariate normal model for
imputation, offers analysts both options, with a default of sampling from amgdbain with a subsampling inter-
val of 100. This interval can be modified by the user. A version of thersstrategy is typically used to sample
completed data sets with (not fully Bayesian) chained equations appsodébreexample, the software MICE in

R and Stata saves the last completed data set in eashirafependently initiated rounds of sequential imputation,

where each round has> 1 iterations through the chained equations. The software IVEWARE for €S a



similar strategy. We note that all of these methods throw away potentially manyletehplata sets in the process
of obtaining samples from approximately independent parameter draws.

From thesen completed data sets, the analyst seeks inferences about some egtinfandxample a popu-
lation mean or regression coefficient. In e&@f, the analyst estimat&3 with some estimatof and the variance
of ¢ with some estimatot.. Forl = 1,...,m, letq®) andu® be respectively the values ¢fanda in D). The

following quantities are needed for inferences:

Gm =Y _q"/m (1)
=1

Uy = iu(”/m 2
=1

bm = Z(q(l) - ij)Q/(m - 1) (3)

=1

The analyst useg,, to estimateQ and7,,, = (1 + 1/m)b,, + @, to estimate VAiQ|S™). Inferences are based
on thet-distribution,(Q — G) ~ tu,, (0, T;,), With v, = (m — 1)(1 + @ /((1 4+ 1/m)by,))? degrees of freedom,
mean zero, and squared scale paramniBter

The rationale for using independent parameter draws is evident in R{hB87) derivations of these inferen-
tial methods. To see this, 16);,. andU;,. be the approximately unbiased point estimate (posterior mea@) of
and its (posterior) variance ¥, was available. Assuming noninformative prior distributions for all pararaeter

as in Rubin (1987), we have

E(Q‘Yobs) - E(E(Q’Yomemis)‘Yobs) - E(Qinc’Yobs> (4)
VaT(Q|Yobs) = VGT(E(Q|Yobsa Ymis)‘Yobs) + E(VGT(Q‘Yobsy Ymis)|Yobs)

= Var(Qinc|Yobs) + E(Uinc|Yobs)- (5)

As suggested by Rubin (1987, p. 85), analysts can simulate (4) and &rbpling values o€);,,. and U;;,.

from their posterior distributionf (Qine, Uine| Y ops). In particular, suppose that eagft”), (")) is a draw from the
posterior distribution ofQ;yc, Uinc). Then, following Rubin (1987), we havg, = lim ¢, = E(Qinc|Yobs) @S
m — 00; Ueo = liM Uy, = E(Uine|Yops) @Sm — o0; and,boe = lim by, = Var(Qine|Yops) @sm — oo. Thus,

for largen, we can use a normal approximation for inferences ahput



Rubin (1987) further presumes that edgH), (")) are independently distributed according to

(q(l)|(jooa boo) ~ N((jom boo) (7)

(W |tine) ~ (Tis, << bso) (8)

where the notation ~ (y, << z) in (8) means that has meary and variance much less than

Assuming noninformative prior distributions for all parameters, this indégece implies that

(@o0|Gms boo) ~ N (Gm, boo/m) 9)
((m = 1)bm/boo|bym) ~ X?n—l (10)
(oo | ) ~ (U, << boo/m). (12)
Thus, from (6) and (9) we have
(Q[S"™), boo, Tioo) ~ N (G, (14 1/m)boo + Tico)- (12)

From (11), one can replaee, with u,, so that
(QIS"™, bog) ~ N (Gm, (1 + 1/m)bog + Tim). (13)

Thet-approximation tof (Q|S™) follows from (10) and (13), with degrees of freedom obtained by matthia
first two moments of the posterior distribution @, 75, /(1 + 1/m)bs + @) |S'™) to those of a? distribution

with v,,, degrees of freedom.

3 Theoretical Considerations and Smulations With Dependent Draws

For modestn, assuming independence in (7) is necessary to ensurg,thatan unbiased estimate bf,, which

in turn is necessary to substituig for b, in the variance in (13). However, and crucially for our argument, for
largem Rubin’s (1987) simulation approach does not require independensare?);,,.. Rather, it requires that
analysts use simulation to construct consistent estimates of the expectatiparial dariance in (5), which can be
done with dependent draws. This is akin to summarizing a posterior distridutiora full (i.e., not thinned) scan

of parameter draws generated from an MCMC algorithm: for long chaiessample mean and sample variance



of the dependent parameter draws are consistent estimates of the pestaioand posterior variance (Tierney,
1994). In fact, the analogy is precise for fully Bayesian imputation modéea®d via MCMC, sincé);,,. is an
unknown parameter with a posterior distribution.
Formally, and assuming a fully Bayesian imputation procedure, supposeehadve a set ofn dependent
draws of(¢"), u(V) derived from a MCMC algorithm that has converged to the limiting distributf¢®; ., Uinc |
Y .bs). We note that such convergence also is assumed when using indejperades: By the ergodic theorem,,
is consistent foZ (Qine | S(m)), U, is consistent fol2 (U, | S(m)), andb,, is consistent fol ar(Qinc|Y ops)-
Thus, for largen and infinitem, we can continue to base inferences on (6), even with dependerg.draw
Because al(¢), (")) are not jointly independent, we cannot assume (9) through (11), memdé3). How-
ever, for sufficiently largen and a converged MCMC sampler, it is reasonable to assume that the Maie Ca
errors in the sampled momen(i&,,, @, b,,) are inconsequential as proportionshaf + u; that is, we assume

Gm = Joor Um = Uso, aNdb,, ~ bs. With this assumption, we can replace (6) with

(QIS™)) ~ N (G, b, + i), (14)

which can be used directly for inferences. We note that whea large, the usual multiple imputation reference
distribution, (Q — ¢) ~ t,, (0,T,,), is essentially equivalent to (14), singg is generally modest for typical
amounts of missing information. This approximate equivalence offers dasahgs convenience of using existing
software routines for multiple imputation inferences, even with dependawsdr

This argument suggests that it is sensible to use all the completed data ssttegduring the data augmen-
tation steps in fully Bayesian imputation models. Can it be advantageous? faaaphis question, we again
turn to the literature on MCMC. In particular, Geyer (1992) and MacEachrd Berliner (1994) show that using
the full set of parameter draws sampled in a converged MCMC (after tpssitnthe burn-in) generally results in
more precise summaries of posterior distributions, including posterior madnsagances, than using only draws
from subsamples of the full chain. Further, using all samples gets athamifficulties of choosing a subsampling
interval. Hence, in addition to being feasible, using all completed data sets pfftential benefits.

To illustrate the validity and potential benefits of multiple imputation with many depérdiaws, we turn

to a simple simulation scenario. We generate 10000 data sets, each comprising00 observations and two



variables distributed as

yii ~ N(0,1) (15)

14+2y14
‘ (16)

Y2 ~ Bernoulli(m;), Wi:m'

Letr; = 1if yo; is missing, and let; = 0 otherwise. In each complete data set, we randomly generate missing
values fory, by independently sampling from Bernoulli distributions with

e~ 05y

p(ri=1) = 1+ e—b+byn’ 17)

In any data set, this generates about 40% missing valugs imder a missing at random mechanism (Rubin,
1976).
We implement multiple imputation of missing using a Bayesian logistic regression,

ai ~ Bern(pi), log(2) = fo + By (18)

with independent, diffuse priors fas, and 5;. We perform the data augmentation by (i) sampling values of
(5o, 41) conditional on a current version &f;,. and (ii) sampling values oY ,,,;s conditional on a current version
of (5o, 51). To sample from the full conditional distribution ¢fy, 51), we use a standard Metropolis step with
two independentV (0, .025) as a proposal distribution. Across the 10000 data sets, this results inly@ig§9%
acceptance rate. Trace plots of parameters suggest convergeecallyavith 2500 consecutive draws. Autocor-
relations among all parameters die down after lag 30. We implement three multiplatiopiscenariosin = 10
independent drawsp = 50 independent draws, and all = 2500 dependent draws.

In each data set, we estimal&y,), 5y, and5; using maximum likelihood estimation, which we then feed
into Rubin’s (1987) multiple imputation inferences. Table 1 summarizes the simulatethge rates and average
lengths of 95% confidence intervals across the 10000 replications. lIfmrameters, the coverage rates when
usingm = 2500 dependent draws are well-calibrated, as is also the case for the ingepeinaws. Generally,
the intervals based amn = 2500 dependent draws have similar properties as those based-er50 independent
draws, with a suggestion of very slight gains in precision due to the laig&€ompared ton. = 10 independent
draws, however, using the larger with dependent draws offers roughly 3% reduction in interval lengths Th
reduction comes essentially for free, since for any replication we algaadgrate the 2500 data sets when running

the MCMC.



Dependent Independent
Estimand| m = 2500 m = 50 m =10
E(yz) | 94.80(.068) 94.72(.069) 94.73(.070)
o 95.21 (.477) 94.39(.481) 94.86 (.497)
B1 94.79 (.659) 94.76 (.663) 94.47 (.683)

Table 1: Results of simulation study of multiple imputation based on large numbepefdent draws. Entries in
the table are the percentage of the 95% confidence intervals that coveralparameter and, in parentheses, the
average length of the 95% confidence interval. All numbers based d0X6flications.

Estimand Consecutive Independent
m =10 m =25 m = 50 m = 50
E(y2) 93.55 93.90 94.56 94.72
.00023, .00006 .00023, .00007 .00023, .00007 .00023, .00008
Bo 91.53 92.88 93.82 95.39
.00888, .0042 .00888, .0049 .00888, .0053 .00887, .0060
51 91.75 92.76 93.58 94.76
.01809, .0071 .01808, .0082 .01808, .0090 .01807, .0103

Table 2: Results of simulation study of multiple imputation based on small numbeepehdent draws. Entries
in the table are the percentage of the 95% confidence intervals that cevenghparameter followed on the next
line by, in order, the average valuesinf, andb,,. All numbers based on 10000 replications.

While the results in Table 1 suggest that dependent draws can be usedlfiple imputation, we emphasize
thatm must be large for this to be the case. In particular, dependent dramsMi©@MC may not offer reliable
estimates for small numbers of dependent samples, since the consistailtydepend on large. To illustrate
this empirically, we repeat the simulation from Table 1 but now use conseairtaws taken from the chain after
convergence. We consider three cases with consecutive sampledy marae{10, 25, 50}. Table 2 summarizes
the simulated coverage rates along with the average valyas,0b,,,) across 10000 replications. The results based
onm = 50 independent draws from Table 1 are shown as a baseline. Using a tianemaer of consecutive
dependent draws results in coverage rates below the nominal 95%. Toisdse to underestimation af,,: for
any parameter, its expectation is nearly identical across all cases. Retlesident in Table 3, is the culprit.

It tends to underestimate, with too small a number of dependent draws, with increasing bias gsts smaller.
This is not surprising, since the positive autocorrelation among congealraws generally reduces the variance
of consecutive sets af!).

The empirical results confirm that analysts planning to use dependewms tham an MCMC must ensure a
sufficiently large number of them, so that the completed data quantities in (Lrteé8ly estimatéq.., tioo, boo)-

To assess this convergence and, hence, if (14) is plausible for auterset ofm dependent samples, one useful
and convenient indicator is the effective sample size (ES§)0fThis can be computed with the values ofg(")

using standard routines, for example with tiwela package in R. Intuitively, if then values ofg(") have a small



Consecutive Subsampled
Estimand| m = 2500 m = 500 m = 500 m = 100
E(y2) | 94.80(.068) 94.91(.068) 94.96 (.068) 94.96 (.069)

Avg. ESS| 482 116 324 79
Bo 95.21 (.477) 95.19 (.476) 95.30 (478) 95.27 (.478)
Avg. ESS 353 89 264 67
5 94.79 (.659) 94.68 (.658) 94.79 (.659) 94.64 (.660)
Avg. ESS 312 81 241 63

Table 3: Results of simulation study of multiple imputation based on dependems evith varying effective
sample sizes. Entries in the table are the percentage of the 95% confidemeal$that cover the true parameter;
in parentheses, the average length of the 95% confidence intervatirati, next line the average effective sample
size (ESS) of the point estimates. All numbers based on 10000 replications.

ESS, we cannot count on the correspondipndoeing close t@.., norb,, being close td.. In the simulations in
Table (2), the average ESS of all parameters are between 27 and 80mie50, and between 21 and 23 when
m = 25; these are quite small values. In contrast, the average ESS in the simulati@mearl whenn = 2500

all exceed 300.

As a rule of thumb for basing multiple imputation inferences on dependenisdrag suggest that analysts
require the minimumESS > 100 for all g, of interest. Using (7) and (10) witlm = ESS as (very) rough
approximations to the sampling distributionsggf andb,,,, this would imply a standard error @f+/100 ~ 10%
of b, When approximating.., with g,,; this is typically a small number. Similarly, witB'S'S = 100 we expect
the ratiob,, /b~ to have a standard error Q/Z/@ ~ 14%. Whenb, is modest compared t@,,, which is usually
the case in missing data settings, the approximation errigy, itypically should be small compared &g, + .

To explore this further, we consider three additional scenarios thahasgmulation runs from Table 1 with
2500 draws. First, we select samplesoft= 500 consecutive draws to represent a case with smaller ESS than the
m = 2500 scans and larger ESS than the= 50 scans. Second and third, we thin the resul@ifig and original
2500 length scans by keeping every fifth draw, resulting in samples ef 100 and (thinned)n = 500 draws. The
thinned scans have reduced autocorrelations, thus representingrealdt88S for comparison. Table 3 summarizes
key results over the 10000 simulation runs. Even with a minimum ESS in the nefgidabof 60 or 80, the 95%
confidence intervals are well-calibrated. Taken together with the undeamge in thém < 50, max(ESS) < 30)
scans from Table 2, the results are in reasonable accord with the pcbpds of thumb.

The simulation studies involve fairly simple models with smallor computational convenience; running
MCMC samplers until convergence in repeated sampling studies can be tedimipaily expensive. Since the theo-
retical arguments in support of using dependent draws do not deperat particular distributional assumptions—

as long as posterior distributions of the quantities of interest are approiynizaessian—we expect the overall



trends in the simulations to hold for other settings. However, with more complaxatzlysts are likely to require
a largerm to ensure convergence of the MCMC sampler and sufficient effeciviple size.

We also repeat the simulation from Table 1 with= 100. Results exhibit the same pattern: using a large
number of dependent draws offers efficiency gains. For too smdibwever, (6) may not hold due to failure
of the normal approximation. In this case, Barnard and Rubin (1999y #hat multiple imputation inference
with independent draws should be based(Gh— G,,) ~ t3,(0,T,,), whered,, = (1/v, + 1/v.s)~* and
veps 1S @N estimate of the observed-data degrees of freedom. Following similaa®gie large: case, we can
substitute consistent estimates(af., b, ) from dependent draws in the expressions(igf, v.s). For largem,

we conjecture that doing so can generate efficiency gains over usiggandent draws.

4 Multiple Imputation in Breastfeeding Study

We now apply multiple imputation with dependent draws to handle missing data inyaddttiee effect of breast-
feeding on children’s later cognitive development. These data werépsdy used by Mitra and Reiter (2011,
2012) to develop methods for propensity score matching with multiply-imputed Qatadescription of the data
closely follows their presentation, although we do not employ matching tectsiogre.

The data comprise a subset of the National Longitudinal Survey of Y&lltBY). This survey began in 1979
with a nationally representative sample of 12686 young men and women in thadé® 14 to 22 years at that
time. This cohort was interviewed annually until 1994 and biannually afteisvaifter 1986, the NLSY collected
detailed information on children born to women in the study. These childreasept the unit of analysis for our
application. We include only first born children to avoid complications due th birder and family nesting. In
addition, we discard 307 children with missing breastfeeding duration aladexhborn before 1979. The resulting
data set comprises 3748 children, of whom 1306 have completely odssatee

We seek to estimate a linear regression of Peabody individual assedsstenaith scores (PIATM), which is
administered to children ages 5 or 6, on fifteen covariates. These inchedmfegorical variables: the child’s race
(Hispanic, black, or other), the mother’s race (Hispanic, black, Asidiite, Hawaiian/Pacific Islander/American
Indian, or other), child’s sex, and two variables indicating the presei@spouse/partner or grandparents at birth.
We categorize three of the ten continuous variables: mother's weekskfmibe previous year (worke@iweeks,
worked less thad8 weeks, worked no less thas and less thah2 weeks, and worked2 weeks), weeks preterm
at birth (0 weeks preterm, less th@nweeks preterm;; or more weeks preterm), and weeks of breastfeeding (less

than24 weeks of breastfeeding, at least weeks of breastfeeding). The remaining seven continuous variables

10



include the number of years between 1979 and when the mother gave bittterimantelligence as measured by
an armed forces qualification test, mother’'s highest educational attainnhddts tirth weight, the number of
days that the child spent in hospital, the number of days that the motherispasipital, and family income. The
full set of variables, along with fraction of missing values in each, is tepdn Table 4.

We implement multiple imputation with th& software package “mix,” which can be freely downloaded at
http://sites.stat.psu.edu/ ~jls/msoftwa. htm. This uses a general location model (Schafer,
1997) for imputation, which is a joint model in which the categorical varialiéew a log-linear model and the
continuous variables (after transformation) follow multivariate normal digidns with common variance and
means given by linear functions of the categorical variables. Specifioaltje log-linear model we include all
main effects plus two interactions (mother’s and child’s race, and presgrspouses and grandparents) suggested
by exploratory data analyses. Following Mitra and Reiter (2011), we a@dpkyCox transformations to several
of the continuous variables to improve normality assumptions. These trarafons are used both for multiple
imputation and for the linear regression model. In the multivariate normal madelsiclude main effects for all
levels of the categorical variables in the regression for the mean. Weage®00 completed data sets using the
built-in MCMC routines in “mix,” derived from then = 5000 dependent draws. The minimum effective sample
size ofgs009 across all coefficients is 1274. We also obtain repeated realizationpmbamately) independent
draws by subsampling 500 setsmaf= 10 completed data sets via systematic sampling, leaving a gap of 500 draws
between successive data sets.

Table 4 displays the point estimates and interval lengths for the caseittb000 dependent draws, as well
as the corresponding average and standard deviation of intervaldeangtiss the 500 sets«af = 10 independent
draws. For any estimand, by desiggyo = 20201 qﬁ? /500 whereh indexes a set of ten completed data sets.
Although not shown here, eaah, hardly varies across imputation scenarios, as expected. Furthergvirate
bso00 approximately equals the average of the 500 setggofigain as expected since MCMC theory suggests that
bsooo converges td, (andbyg is an unbiased estimator bf.). However, using smallet. to ensure independent
draws has a cost: the intervals based on the independent draws age tlveag those based on dependent draws.
Moreover, usingn = 10 results in additional instability in inferences, as can be seen in the stanslaadions of
the interval lengths in Table 4. For example, the 95% confidence intengahléor the coefficient of the logarithm
of family income {+.5) plausibly could be less than 1.0 in one setof= 10 completed data sets and more than 1.4
in another set. Witlg,,, values expected to be centered on .67, this variability could result in intermataining
(or nearly containing) zero for some sets and not close to containingreeter sets.

Finally, although not shown here, results based on systematic subsanithles w 100 approximately inde-
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Avg. Cl Length (SD)

Estimand % missing Gm m = 5000 m =10
Intercept — 79.32 13.24 14.04 (1.83)
Mother’s race - black 9 176 10.90 11.43(1.41)
Mother’s race - Asian 9 490 13.80 14.69 (2.12)
Mother’s race - white 9 3.26 6.35 6.61 (.77)
Mother's race - Hawaiian/Pl/American Indian 9 279 7.43 7.73 (.82)
Mother’s race - other 9 150 7.07 7.35(.82)
Child’s race - black 0 -2.08 10.62 11.14 (1.36)
Child’s race - other 0 45 5.89 6.13 (.71)
Child’s sex - female 0 91 1.97 2.05 (.21)
Spouse/partner present at birth 4.2 .99 4.55 4.76 (.60)
Spouse/partner not know about child until after birth 4.2 .78 3.24 3.40 (.41)
Grandparents in house 1 yr. before birth - Yes 41  -98 3.26 3.42 (.41)
Weeks mother worked in yr. before birth - 1-48 weeks 23.5 .70 3.24 3.45% (.5
Weeks mother worked in yr. before birth - 49-51 weeks 23.5 .59 4,12 568 (
Weeks mother worked in yr. before birth - 52 weeks 235 1.89 3.69 3.92 (.59
Weeks preterm - 1-4 weeks 4.8 .98 2.70 2.81 (.31)
Weeks preterm - >5 weeks 4.8 91 6.59 6.87 (.84)
Breastfeeding at least 24 weeks - Yes 0 1.09 2.84 2.95(.31)
Sq. root(mother’s age - mother’s age in 1979) 0 -.40 1.33 1.41(.19)
Sq. root(mother’'s AFQT score) 49 1.15 .65 .68 (.08)
Child’s birth weight 14 .01 .06 .06 (.01)
Log(number of days child spent in hospital+.5) 6.6 -1.34 3.01 3.12 (.33)
Log(number of days mother spent in hospital+.5) 6.8 .08 3.29 3.40 (.35)
Mother’s attained education 4.3 49 .63 .65 (.08)
Log(family income+.5) 24.6 .67 1.08 1.18 (.21)

Table 4: Regression coefficient estimates and 95% confidence intengéhdeafter multiple imputation with one
set ofm = 5000 dependent draws, and the corresponding averages and stardatibds for 500 disjoint sets of
m = 10 independent draws. The response variable PIATM has 36% missingsvalu

pendent draws closely resemble the results frommthe 5000 dependent draws.

5 Concluding Remarks

For multiple imputation based on Bayesian joint models, the theoretical and simulkedigdts indicate that analysts
can obtain valid inferences using dependent draws, providedithatlarge. Largen is often available in such
settings, because analysts using MCMC typically run (multiple) long chainssiareronvergence. There can
be advantages to using dependent draws, as analysts can avoid té ithsktifying appropriate subsampling
intervals and possibly increase accuracy by using langerOf course, analysts always can run the chain long
enough to ensure a large number of independent draws after ajpeaarosampling, in which case the inferences

from dependent and independent draws likely will be very similar. Tak@can be disadvantages to using many
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dependent draws when each completed data analysis is computationaligiggpdhe cost in terms of timeliness
and computing resource usage from repeating the completed data analygismes could outweigh the benefits
from using the dependent draws.

As a practical guideline, we recommend that analysts estimate the amount of tineeraputing resources
needed per completed data analysis with a trial run based on a modestigizadghple of the completed data
sets from the converged MCMC sampler. The analyst then can projetti@ ofm for which computation costs
are acceptable, and determine if the effective sample size is large enbtigtia. Our simulations required
a minimum effective sample size of at least 50 for valid inferences with dkgmerdraws, but to be safe we
recommend minimum effective samples sizes of at least 100 (along with kcelnefiking that the MCMC sampler
has converged). If using all completed data sets from the convergad ishtoo expensive, analysts can use
subsamples of completed data sets. We generally expetrws from a thinned chain to yield higher effective
sample sizes tham consecutive draws.

The theoretical arguments of Section 3, based on ergodic theorems iyl not automatically apply for
approximations to full Bayesian models like chained equations. Although éipggeaches mimic Gibbs samplers,
the collection of conditional models may not actually correspond to a properdistribution (Liuet al., 2012).
Nonetheless, since chained equations approaches have been shpinoadly to perform comparably to proper
Bayesian imputation models, at least for relatively straightforward modelsis td/an Buureret al., 2006), we
conjecture that using dependent draws, i.e., using more than the finaletechpata set in each cycle of iterations,

should offer similar advantages.
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