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Marginal Likelihood From the Gibbs Output 
Siddhartha CHIB 

In the context of Bayes estimation via Gibbs sampling, with or without data augmentation, a simple approach is developed for 
computing the marginal density of the sample data (marginal likelihood) given parameter draws from the posterior distribution. 
Consequently, Bayes factors for model comparisons can be routinely computed as a by-product of the simulation. Hitherto, this 
calculation has proved extremely challenging. Our approach exploits the fact that the marginal density can be expressed as the 
prior times the likelihood function over the posterior density. This simple identity holds for any parameter value. An estimate 
of the posterior density is shown to be available if all complete conditional densities used in the Gibbs sampler have closed-form 
expressions. To improve accuracy, the posterior density is estimated at a high density point, and the numerical standard error of 
resulting estimate is derived. The ideas are applied to probit regression and finite mixture models. 

KEY WORDS: 	 Bayes factor; Estimation of normalizing constant; Finite mixture models; Linear regression; Markov chain Monte 
Carlo; Markov mixture model; Multivariate density estimation; Numerical standard error; Probit regression; 
Reduced conditional density. 

1. INTRODUCTION 	 (1994) showed that the marginal likelihood (equivalently, 

The advent of Markov chain Monte Carlo (MCMC) meth- the marginal density of y )  under model Mk, that is, 

ods (Gelfand and Smith 1990, Tanner and Wong 1987) to 
simulate posterior distributions has virtually revolutionized 
the practice of Bayesian statistics. For the most part, these 
methods have been used for estimation and out-of-sample can be estimated as 
prediction, because both of those problems are easily solved 
given a sample of draws from the posterior distribution. On 
the other hand, the problem of calculating the marginal like- 
lihood, which is the normalizing constant of the posterior 
density and an input to the computation of Bayes factors which is the harmonic mean of the likelihood values. Al- 
(see, for example, Berger 1985, Kass and Raftery 1995, or though this estimate is a simulation-consistent estimate of 
O'Hagan 1994), has proved extremely challenging. This is m ( y1 Mk), it is not stable, because the inverse likelihood 
because the marginal likelihood is obtained by integrating does not have finite variance. But consider the quantity 
the likelihood function with respect to the prior density, proposed by Gelfand and Dey (1993): 
whereas the MCMC method produces draws from the pos- 
terior. 

One way to deal with this problem is to compute Bayes 
factors without attempting to calculate the marginal like- 
lihood by introducing a model indicator into the list of 
unknown parameters. Work along these lines has been re- where p(0) is a density with tails thinner than the product of 

ported by Carlin and Polson (1991), Carlin and Chib (1995), the prior and the likelihood. This can be shown to have the 

and many others. To use these methods, however, it is nec- property that ~ G +D m ( y  Mk) as G becomes large without 

essary to specify all of the competing models at the out- the instability of mNR.Nonetheless, this approach requires 

set, which may not be always possible, and to carefully a tuning function, which can be quite difficult to determine 

specify certain tuning constants to ensure that the simula- in high-dimensional problems, and subsequent monitoring 
tion algorithm mixes suitably in model space. In this arti- to ensure that the numbers are stable. In fact, we have 

cle, therefore, we concern ourselves with methods that di- found that the somewhat obvious choices of p(.)-a nor-

rectly address the calculation of the marginal likelihood. ma1 density or t density with mean and covariance equal 

Suppose that f ( yO k , M k )  is the density function of the to the posterior mean and covariance--do not necessarily 

data y = ( y l ,. . . ,y,) under model Mk ( k  = 1 , 2 , .  . . ,K )  satisfy the thinness requirement. Other attempts to mod- 

given the model-specific parameter vector Ok. Let the prior ify the harmonic mean estimator, though requiring samples 

density of O k  (assumed to be proper) be given by ~ ( 0 kMk) ,  from both the prior and posterior distributions, have been 1 
discussed by Newton and Raftery (1994). 

and let { Q P ) }I { O f ) ,' ' ' 7 ' : 6 ) }  be draws from the The purpose of this article is to demonstrate that a sim- 
posterior T ( O k ~ ,M k )  using a MCMC ple approach to the marginal likelihood and the 

say the Gibbs Newton and Raftery Bayes factor is available that is free of the problems just de- 
scribed. This approach is developed in the setting where the 
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Gibbs sampling algorithm, with or without data augmenta- 
tion, has been used to provide a sample of draws from the 
posterior distribution. To compute the marginal density by 
our approach, it is necessary that all integrating constants 
of the full conditional distributions in the Gibbs sampler be 
known. This requirement is usually satisfied in models fit 
with conjugate priors and covers almost all applications of 
the Gibbs sampler that have appeared in the literature. 

The rest of the article is organized as follows. Section 2 
presents the approach, and Section 3 illustrates the deriva- 
tion of the numerical standard error of the estimate. Section 
4 presents applications of the approach, first for variable 
selection in probit regression and then for model compar- 
isons in finite mixture models. The final section contains 
brief concluding remarks. 

2. THE APPROACH 

Suppress the model index k and consider the situation 
wherein f (y 0 )  is the sampling density (likelihood function) 
for the given model and ~ ( 0 )is the prior density. To allow 
for the possibility that posterior simulation requires data 
augmentation, let z denote latent data and suppose that for 
a given set of vector blocks 0 = (01, 02 , .  . . ,O B ) ,  the Gibbs 
sampling algorithm is applied to the set of (B + 1) com-
plete conditional densities, 

The objective is to compute the marginal density m(y M k )  
from the output { o ( ~ ) ,z(g))globtained from (4). 

The approach developed here consists of two related 
ideas. First, m(y),by virtue of being the normalizing con- 
stant of the posterior density, can be written as 

where the numerator is just the product of the sampling 
density and the prior, with all integrating constants in- 
cluded, and the denominator is the posterior density of 
0. It is worthwhile to refer to this simple identity, which 
holds for any 0, as the basic marginal likelihood identity 
(BMI). Second, for a given 0 (say O * ) ,  the posterior or- 
dinate ~(O*ly)can be estimated by exploiting the infor- 
mation in the collection of complete conditional densities 
( ~ ( 0 ,y, 0, (s # r ) ,z)):, . The technique for doing so is 
described later, but for the present, if the posterior density 
estimate at O* is denoted by +(O* y ) ,  then the proposed 
estimate of the marginal density, on the computationally 
convenient logarithm scale, is 

lnm(y)= In f (y lO*)  + lnr(O*)- ln+(O* y ) .  (6) 

It is important to observe the simplicity and benefits of 
this expression: all it requires is the evaluation of the log- 
likelihood function and the prior and an estimate of pos- 
terior ordinate. The estimate does not suffer from any 
instability problem, because it is a density value that is 
averaged rather than its inverse. In addition, the entire es- 
timation (simulation) error arises from the estimation of 
the posterior ordinate, and this simulation error can be de- 
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rived, as shown in Section 3. It is now time to examine the 
method for calculating the posterior density estimate from 
the Gibbs output. 

2.1 Estimation of ~(O*ly) .  

Consider now the estimation of the multivariate density 
T(O* y) and the selection of the point O*.  As was pointed 
out, the BMI expression holds for any 0, and thus the choice 
of the point is not critical, but efficiency considerations dic- 
tate that for a given number of posterior draws, the density 
is likely to be more accurately estimated at a high density 
point, where more samples are available, than at a point in 
the tails. It should be noted that a modal value such as the 
posterior mode, or the maximum likelihood estimate, can 
be computed from the Gibbs output, at least approximately, 
if it is easy to evaluate the log-likelihood function for each 
draw in the simulation. Alternatively, one can make use of 
the posterior mean provided that there is no concern that it 
is a low density point. 

We now explain how the posterior density ordinate can 
be estimated from the Gibbs output, starting with a canoni- 
cal situation consisting of two blocks of parameters before 
turning to the general case. We show that the proposed 
multivariate density estimation method is easy to imple- 
ment, requires only the available complete conditional den- 
sities, and produces a simulation consistent estimate of the 
posterior ordinate. 

2.1.1 Two Vector Blocks. Suppose that Gibbs sampling 
is applied to the complete conditional densities 

which is the setting of Tanner and Wong (1987). Let the 
output from the Gibbs algorithm be given by { o ( ~ ) ,z(g));=, 
and suppose that O* is the selected point. If the posterior 
density is written as 

then it follows that an appropriate Monte Carlo estimate of 
~ ( 0 y )at O* is 

because z(g) is a draw from the distribution zly. Gelfand 
and Smith (1990) referred to this technique as Rao-
Blackwellization and argued that it improves on the multi- 
variate kernel method (Scott 1992). Also, under regularity 
conditions, the estimate is simulation consistent; that is, 
+(O* ly) -+ T(O* y )  as G becomes large, almost surely, as a 
consequence of the ergodic theorem (Tierney 1994). Sub- 
stituting the estimate of the posterior ordinate into (6) gives 
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the following estimate of the marginal likelihood: 

This simple expression can be used for a large class of mod- 
els, including the probit regression model discussed later. 
Observe that the calculation amounts to evaluating the like- 
lihood, the prior, and the "complete data" posterior density 
at the point 8". 

2.1.2 Three Vector Blocks. An even larger class of mod- 
els can be covered by slightly generalizing the Tanner and 
Wong structure. Suppose that the Gibbs sampler is defined 
through the complete conditional densities 

Models such as linear regression, linear regression with in- 
dependent Student-t errors, Zellner's seemingly unrelated 
regression, and censored regression either fall in this cat- 
egory or are a special case of this structure if z is absent. 
Once again, the objective is to estimate ~ ( 8 *ly),which now 
is expressed as 

where 

and 

is the reduced conditional density ordinate. It should be 
clear that the normalizing constants of ~ ( e l l y ,02,Z) and 
r ( B 2ly, el,z) must be included in the integration for the 
decomposition in (8) to be valid. The first ordinate, ~ ( 0 ;ly), 
can be estimated in an obvious way, by taking the ergodic 
average of the full conditional density with the posterior 
draws of (02,z), leading to the estimate 

G 

+(e;Iy)= Cn(e;ly,G - ~  eF) ,~(g) ) .  

g=1 

A similar technique, with an important twist, can be invoked 
to obtain the reduced conditional ordinate in (9). Recognize 
that the draws of z from the Gibbs sampler are from the dis- 
tribution [ziy] and not from [zly, 871. Therefore, the com- 
plete conditional density of 82 cannot be averaged directly. 
A simple solution is available to deal with this complica- 
tion: Continue sampling for an additional G iterations with 
the complete conditional densities 

where in each of these densities, el is set equal to 8;. From 
MCMC theory, it can be verified that the draws {z(j))from 
this run follow the density p(zly,By), as required. Conse- 
quently, +(8;j y, 8;) = G-I C 7r(6J;ly, 07, z(j)) is a simu- 
lation consistent estimate of (9). Although this procedure 
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leads to an increase in the number of iterations, it is impor- 
tant to stress that it does not require new programming and 
thus is straightforward to implement. Note that the reduced 
conditional run is not necessary if z is absent from the sam- 
pling. In this case the reduced conditional density of e2is 
identical to its complete conditional density, and the density 
estimate reduces to one used by Zellner and Min (1995) in 
a different context. 

Substituting the two density estimates into (6) yields the 
estimate 

2.1.3 General Case. Although the technique described 
thus far will apply to many problems of importance, con- 
sider the situation with an arbitrary number of blocks. Even 
in this case, the posterior density ordinate can be estimated 
rather easily. 

Begin by writing the posterior density at the selected 
point as 

where the first term is the marginal ordinate, which can 
be estimated from the draws of the initial Gibbs run, 
and the typical term is the reduced conditional ordinate 
"(8: y ,  07, e;, . . . ,e:-,). The latter is given by 

where T is being used to denote density and distribution 
function interchangeably. To estimate this term, continue 
the sampling with the complete conditional densities of 
{e,, Or+,, . . . ,eB,z), where in each of these full condi- 
tional densities, 0, is set equal to 8:, (s < r - 1). If the 
draws from the reduced complete conditional Gibbs run are 
denoted by {@, Q:$,, . . . ,B!), z(j)},then an estimate of 
(10) is 

whereas an estimate of the joint density is n:=, ?(e:ly, 
8: (s < r)) .  The log of the marginal likelihood is 

B 

lnm(y) = In f ( y e * )+ Inr(B*)- xln+(8:ly,  e:(s < r ) ) .  

As an illustration of this procedure, suppose that B = 3, 
a situation that arises in longitudinal random effects models 
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and many other models. Then ~ ( 8 %y,  8;)  is estimated 1 
as G-l C~ ( 8 %y,  8T, O F ) ,~ ( j ) ) ,where the draws { O F ) ,z ( j ) )1 
are obtained by continuing the Gibbs sampler with 

and 

Finally, additional G iterations with the densities 

produce draws { z ( j ) )that follow the distribution [ z  y ,  81, Q a ] .  
These draws yield an estimate ~ ( 8 ;  This tech- y ,  8 ; ,8%) .  
nique is illustrated in Section 4.2 for mixture models. 

2.2 Bayes Factor Estimate 

To compute the Bayes factor for any two models k and 
I-that is, m ( y1 M k ) / m ( yMl)-the calculation described 
earlier is repeated for all models, and the following estimate 
is used: 

An estimate of the posterior odds of any two models is 
given by multiplying the estimated Bayes factor by the prior 
odds. 

2.3 Remarks 

In some situations there are two sets of latent vectors 
( z ,+) such that the density f ( y e ,+) = J f ( y ,  zl0, +) dz 
is available in closed form but the likelihood f (yl8) 
= J f ( y ,  $18) d+ is not. This occurs, for example, in dis- 
crete response data models with random effects. To analyze 
this situation, one can use the BMI expression 

Both the numerator and denominator can be evaluated at 
the point ( O * ,+*), and the posterior mean of ( 8 ,+) and 
n(8,  +ly) can be estimated using the method in Section 2.1 
by treating + as an additional block. 

The BMI can also be used to assess the convergence 
of the Gibbs sampler, by computing and monitoring its 
stability for different iterations. Such an idea, combined 
with a different approach for computing the posterior den- 
sity, appears in the Gibbs stopper proposed by Ritter and 
Tanner (1992). Raftery (1994) mentioned using the ker- 
nel estimate of the posterior density in connection with the 
BMI, but the resulting estimate can inherit the inaccuracy 
of the kernel method, especially in high dimensions. Fi-
nally, another identity similar to the BMI is available in 
the prediction context. Suppose that y f  denotes an out-of- 
sample observation. Then the Bayesian prediction density, 
f ( ~ f = J f ( ~ Y ,~ ) T ( ~ I Y )Y )  f d o ,  can be expressed as 
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(see Besag 1989). This identity follows in a straightfor- 
ward manner from the definition of the posterior density 
n ( 8  y ,  y f  ) and cross-multiplying. Besag (1989) alluded to 
a different proof. 

3. NUMERICAL STANDARD ERROR 

As mentioned in the preceding section, the proposed den- 
sity estimation procedure is likely to produce an accurate 
estimate of n ( 8 y ) at the point 8*. In fact, it is possible 
to calculate the accuracy achieved by a computation that 
uses the Gibbs output. This calculation yields the numerical 
standard error of the marginal density estimate (or, equiva- 
lently, that of the posterior density estimate). The numerical 
standard error gives the variation that can be expected in 
the estimate if the simulation were to be done afresh, but 
the point at which the ordinate is evaluated is kept fixed. 

To concentrate on the main ideas, consider the case in 
Section 2.1.2 and define the vector stochastic process 

where in the first component the latent vector (e2,Z )  [ . I  y] 
while in the second component the latent vector z follows 
the distribution [. y ,  81]. In general, h is a B x 1vector with 
the rth component given by "(8: Iy, 87, e;,. . . , 81 ( 1  
> r ) ,z ) , the integrand of (10). 

It should be noted that due to the procedure used to es- 
timate the reduced conditional ordinate, the second com- 
ponent of h is approximately independent of the first. But 
for expositional simplifications, it is worthwhile to proceed 
with the vector formulation. Then in this notation, 

and our objective is to find the variance of two functions 
of h, namely = hl x h2 and $2 = ln(hl)+ 1n(h2) 
-. In ?(BT y )  + In ?(Ba y ,  8 ; ) .  The variance of these two 
functions is found by the delta method as soon as the vari- 
ance of h is determined. Because h inherits the ergodic- 
ity of the Gibbs output, it follows by the ergodic theorem 
(Tierney 1994) that 

almost surely, where p = ~ ( 8 ;( ~ ( O y l y ) ,  y , Q T ) ) ' ,  
lirn G { E ( ~- p ) ( h- p) ' )  = 27rS(O),

G'cc 

and S(0) is the spectral density matrix at frequency zero. 
An estimate of f2 = 27rS(O)can be obtained by the approach 
of Newey and West (1987) or Geweke (1992). If 

then 
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Table 1. Nodal lnvolvement Data 

case Y XI X2 X3 X4 X5 Case Y XI X2 X3 XA x.5 

where q is some constant, essentially the value at which the 
autocorrelation function tapers off. In the applications to 
follow q is conservatively set equal to 10, although there 
was negligible to vanishing serial correlation in the h ( g )  

process. The variance of $ J ~ ,for example, is found by the 
delta method to be 

where the derivative vector consists of elements h;' and 
h;'. The square root of this variance is the numerical stan- 
dard error of the marginal likelihood in the log scale. 

4. EXAMPLES 

In this section the approach developed earlier is applied to 
two important classes of models. In particular, the methods 
are discussed in the context of variable selection in binary 
probit regression models and in the context of two broad 
classes of finite mixture models, the iid mixture model and 
the Markov mixture model. 

By way of notation, for a d-dimensional normal ran-
dom vector with mean p and covariance matrix X ,  
the density at the point t is denoted by $(tip,X )  
= - ( ~ T ) ~ / ~ c - ' / ~exp(- ( t  - j .~)'X-'(t- p) /2 )  and the 
inverse gamma density at the point s is denoted by 
pIG(sa ,  b) E ( b a / r ( a ) )  exp(-bls).  Finally, for ( l / ~ ) ( ~ + ' )  
a m vector q on the unit simplex, the Dirichlet 
D(a1, a2, .  . . ,a,) density is denoted by p ~ ( q l a 1 , .. . ,a,)- r(C,a j ) q P 1 - l . .. q$-l /  njr ( a j ) .  

4.1 Binary Probit Regression 

Consider the data in Table 1 on the presence of prostatic 
nodal involvement collected on 53 patients with cancer of 
the prostate. The data (reported in the study by Brown 
(1980); see also Collett 1991) include a binary response 
variable y that takes the value 1 if cancer had spread to the 
surrounding lymph nodes and value zero otherwise. The 
objective is to explain the binary response with five vari- 
ables: age of the patient in years at diagnosis ( z l ) ;level of 
serum acid phosphate ( x 2 ) ;the result of an X-ray exami- 
nation, coded 0 if negative and 1 if positive ( Q ) ;  the size 
of the tumor, coded 0 if small and 1 if large ( 5 4 ) ;  and the 
pathological grade of the tumor, coded 0 if less serious and 
1 if more serious ( x 5 ) .  

The probability of positive response can be explained 
through a probit link function or, as by Collett (1991), by 
a logit link. If interactions and powers of explanatory vari- 
ables are excluded, then there are 32 possible models that 
can be fit. Collett's finding from the classical deviance 
statistic (-2 times the maximized log-likelihood) is that 
the logistic model containing log(z2) ,xs,  and x4 provides 
a suitable fit for the data among these 32 models. These 
data are reanalyzed to demonstrate the computation of the 
marginal likelihood using nine of these models (defined 
later and selected entirely for illustrative purposes). 

Under model Ic ,  suppose that 

where @(.) is the cumulative distribution function of the 
standard normal density, xik are the covariates included in 
model I c ,  and 0, is the corresponding regression parame- 
ter vector. The likelihood function under M k ,  assuming a 
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Table 2 Summary of Results for Nodal Involvement Data 	 the sampler for G = 5,000 cycles after deleting the first 
500, and the estimate P* = is obtained. c~ ( ~ ) / 5 , 0 0 0  

log Then the logarithm of the marginal likelihood of model 
(maximized log Num 

Mk isTerms fitted in model lik) d.f. (marginal) 	 SE 

random sample, is then 

For this situation, the marginal likelihood can be computed 
rather simply by the Laplace method (see Kass and Raftery 
1994), but given the small sample size, it is difficult to know 
the accuracy of the Laplace approximation. Harmonic mean 
type estimators, on the other hand, are rather more difficult 
to obtain with this likelihood, because its tails generally 
decline quite sharply. 

A procedure that works extremely well in conjunc-
tion with the technique developed above is the data 
augmentation-Gibbs sampling method of Albert and Chib 
(1993a). Suppose that the prior information about PI, is 
weak, but not improper, and is represented by a multivari- 
ate normal prior with the mean of each parameter equal to 
.75 (because each covariate is expected to have a positive 
impact on the probability of response), and a standard de- 
viation of 5. Under the assumption that the parameters are 
independent, the prior of PI, takes the form 

PI, - N(aI,, A,'). 

Suppressing the model index k ,  the Gibbs draws for each 
model are obtained as follows. Define a normally dis- 
tributed latent variable, zi, such that 

where I(A) is an indicator function of the event A. This 
in fact is equivalent to the probit model, because Pr(zi 
> 0) = Q(xiP).Then, following Albert and Chib (1993a), 
the Gibbs sampler is defined through the complete condi- 
tional densities 

.(Ply, z) = ~(PIB,,  B) 

and 

where, it should be noted, the mean vector of the third den- 
^ (9)sity (i.e., p, ) is produced as a by-product of the sampling 

algorithm. 
The results are summarized in Table 2, where for each 

of nine models, the maximized likelihood is reported along 
with the degrees of freedom, the log of the marginal like- 
lihood, and its numerical standard error. From this table it 
can be seen that the marginal likelihood is very precisely 
estimated in all the fitted models. Of course, these results 
are obtained with G = 5,000 draws, and further improve- 
ments in accuracy can be achieved by increasing G. For 
comparison, the BMI expression was evaluated at a point 
that was one posterior standard deviation from P*.As ex- 
pected, this led to an increase in the numerical standard 
error of the estimate and, for example, was .26 in Mg,with 
G = 5,000.The Laplace method was also used to determine 
the marginal likelihood, and the results were in agreement 
up to the second decimal place. We also examined if a 
multivariate kernel estimate of the posterior ordinate (with 
a Gaussian product kernel) could be used in the BMI ex- 
pression. This procedure did not produce equally accurate 
results. Also note that xl (the age variable) does not im- 
prove on the model with just a constant (the Bayes factor for 
the second model vs. the first is .009), whereas the model 
with the variable x3 (X-ray) has a Bayes factor of approxi- 
mately 25 versus the model with just a constant. The Bayes 
factor for M8 versus Mg is 5.33, supporting the conclusion 
of Collett (1991), who argued that M8 is the best model, 
and also demonstrating the value of the marginal likelihood 
in providing information about the comparative value of a 
fitted model. 

4.2 Marginal Likelihood in Mixture Models 

To further illustrate the usefulness of our approach, con- 

Table 3. Velocity (km/second) for Galaxies in the Corona Borealis Region 

where B, = (A +XfX)-'(Aa +Xfz) ,B= (A + XfX)-l ,  
z = (zl,2 2 , .  . . , zn)', X is the matrix of all the covariates, 
and 4(.Ip, l ) I [a ,  b] is the normal density truncated to the in- 

terval [a,b ] .The output { P ( ~ ) ,  is obtained by running p:)) 
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Table 4. Summary of Results for Galaxy Data 
distributions 

Model fitted log(margina1) Num SE 

Two components: a: = a', V j -240.464 ,006 
Three components: a: = a', V j -228.620 ,008 
Three components: a: unrestricted -224.138 ,086 

and 

sider the calculation of the marginal likelihood in two broad 
applications that involve mixture models. The first is con-
cerned with determining the number of components in a 
Gaussian finite mixture model applied to astronomical data 
on the velocity of galaxies. The second is concerned with a 
mixture model that applies to time series data. This model, 
which is also referred to as a Markov switching model or a 
hidden Markov model, is illustrated with data on the growth 
rates of U.S. gross national product for the postwar period. 

4.2.1 Determining the Number of Components in a 
Mixture. Consider the data set in Table 3 on velocities 
of 82 galaxies from 6 well-separated conic sections of the 
Corona Borealis region, originally presented by Postman, 
Huchra, and Geller (1986). The objective is to find the 
best-fitting Gaussian finite mixture model. This data set 
has been analyzed by Roeder (1990) who developed a non-
parametric density approach to determine the number of 
modes. Subsequently, Carlin and Chib (1993) reanalyzed 
the data by parametric Bayesian methods and estimated 
Gaussian mixture models with two to five components us-
ing the Gibbs sampler. Their results indicate symptoms of 
overfitting when models with four or five components are 
estimated. The Gibbs output from these models displays 
nonvanishing serial correlation for extremely high lags, in-
dicating difficulties with convergence and nonidentifiability 
of parameters. (See Crawford 1994 for a discussion of iden-
tification issues in mixture models.) For this reason, models 
with two and three components are fit. 

For the model with d components, suppose that the 
jth component is given by 4(yi lp j ,a; ) ,where yi i s  ith 
data value (velocity/1,000) and ( p j ,a;) is the component-
specific mean and variance. If each component is sampled 
with probability qj (Cq, = I ) ,  then the density function of 
the data y = ( y l ,. . . ,ys2) given the parameters 8 is 

where8 = ( q , p , u 2 )withq = ( q l , q ~ , . . . , q d ) , p= ( ~ 1 , p 2 ,  
. . . ,pd), and u2= (a?,. . . , a ; ) .It is useful to refer to this 
model as the "iid mixture model" because, as is well known, 
by introducing iid latent variables zi E { 1 , 2 ,  . . . ,d )  such 
that 

and defining f (yilzi = j, 8) = 4(yilpj,a;)  leads to the 
mixture model in (16). 

Assume that all components of 8 are mutually inde-
pendent, and define the prior information through the 

where po = 20,A-' = 100,vo = 6 ,  = 40, and a ,  = 1 .  As 
can be observed, these priors reflect weak prior information 
about the parameters. Under these prior distributions, the 
objective is to compute the marginal likelihood for models 
with two and three components. In addition, models ob-
tained by restricting the variance a; to be constant across 
components are also of interest. 

The Gibbs implementation for this model is straightfor-
ward (see Diebolt and Robert 1994 and West 1992). Let 
z = ( z l, . . . ,z,) ,  then Gibbs sampling is defined through 
the conditional densities of p ,  u2,q ,  and z .  Let Tj = {i : 
zi = j )  be the set of observation indices for the observa-
tions classified into the jth population and let n, represent 
the number of observations so assigned. Now pick out the 
observations that correspond to the jth population and place 
them in the vector y, and define an n, vector i ,  comprising 
of units. Then 

and 

and Pr(zi = jly, 0) oc qj x 4(y i lp , ,a2) ,i 5 n, where f i j  
= ( A  + a j 2 n j ) - ' ( ~ p ~+ a j 2 i i y j ) ,~j = ( A  + a-'n.)- l3 . 1 ' 

and 6, = ( y j  - i j p j ) ' ( y j- i jp , ) .  
The posterior density ordinate can be computed from the 

decomposition 

where 8*is taken to be the (approximate) maximum likeli-
hood estimate computed by evaluating (16) for each simu-
lated draw. Now apply (11) as follows: 

The draws from the full Gibbs run are used to estimate 

T ( P * Y )= J Ilg=l 4 ( ,  Ib,, Bj)n(z ,a21y)dz dm2. 
Next, the draws from the reduced Gibbs run with 
the densities ~ ( a ; l y ,z ,  p * ) ,n(qly,z )  and {Pr(zi ly ,  
p*,a2,q ) )  are used to estimate n(a2*Ip*,y )  
-- J d lP I G ( ~ ~ I ~ { v o + ~ ) ,~ { 6 0 + 6 j ) ) n ( z y ,p*)dz. 

Finally, the draws from the subsequent reduced 
Gibbs run with the densities n(qly,z )  and {Pr(zil y ,  
p * , u 2 * ,q ) )  are used to estimate ~ ( q * l y ,p*,a2*) 
= J ~ ~ ( q l a l+nl ,  . . . ,ad + nd)p(zly,p*,a2*)dz. 
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Table 5. Summary of Results for U.S. GNP Growth Rates Data 

Prior Posterior 

Parameter Mean Std dev Mean Std dev 

PI 0 1.414 - ,313 ,314 

PP .75 1.414 1.038 .I 1 1  

c2 1.33 ,943 ,672 ,089 

PI 1 .8 ,163 ,743 ,098 

P22 .8 .I63 ,911 ,042 

Log marginal likelihood -229.496 (.028) 

An estimate of the marginal likelihood is given by substi- 
tuting these quantities into (12). 

Our results, which are based on G = 5,000 draws, are 
summarized in Table 4. (Almost identical results were ob- 
tained when the BMI expression was evaluated at the poste- 
rior mean instead of the approximate maximum likelihood 
value.) First, the two-component model is clearly domi- 
nated by both three-component models. Second, the three- 
component model with a2unrestricted appears to be better 
than the three-component model with a2restricted to be the 
same across components. This result would not be obvi- 
ous from just looking at posterior distributions of the fitted 
models, because all the parameters in both three-component 
models are tightly estimated. Third, all the numerical stan- 
dard errors are small, indicating that the marginal likelihood 
has been accurately estimated. 

4.2.2 Markov Mixture Model. As a final illustration of 
the value of our approach, consider data on the quarterly 
growth rates of U.S. gross national product (GNP) for the 
postwar period 1951.2 to 1992.4. Many different time series 
models have been fit to this data, and our objective is to 
demonstrate how the marginal likelihood can be calculated 
in one particular case, of substantial practical importance, 
for which this calculation has hitherto not been attempted. 

The model of interest is the Markov mixture model, 
also sometimes referred to as the Markov switching model 
(Goldfeld and Quandt 1973; Hamilton 1989). Let yt denote 
the growth rate of GNP (multiplied by loo), and suppose 
that 

where p = (p l ,  p2) and zt is an unobserved state variable 
that follows a two-state Markov chain, 

where P = {pij) is the one-step transition probability ma- 
trix of the chain (i.e., pij = Pr(zt = jlztPl = i ) ,  and rl is 
the probability distribution at t = 1. This model is a gen- 
eralization of the iid mixture model of the last subsection. 
Furthermore, it is a model that is particularly appropriate 
for modeling correlation in growth rates that are observed 
in practice. 

Let 8 = (p,a2,91,qz) ,  where qi is the ith row of P; 
then the likelihood function for the Markov mixture model 

is given in terms of the one-step ahead prediction densities, 

where K-l is the observed data up to time t - 1 and p(zt 
= 1lK-l, 8 )  is a time-varying conditional probability. The 
joint density of all the data is then 

A little reflection shows that, given z,  this model has the 
same structure as the iid mixture model, and thus the 
marginal likelihood calculation proceeds in virtually the 
same way. The complete conditional densities of (p,a2) 
are identical to those in the iid mixture model, and, if one 
assumes that the prior density on qi is Dirichlet(cril, cri2), 
then 

where nij denotes the number of one-step transitions from 
i to j in the sequence z (see Albert and Chib 1993b). A 
decomposition similar to (18) is again available while each 
of the ordinates can be estimated by the reduced conditional 
Gibbs sampling procedure described earlier. 

The Gibbs implementation of this model, and the cal- 
culation of the marginal likelihood, require the simula- 
tion of the latent variables z from p(zl y ,  8 ) .  As described 
by Chib (1993), the latent variables are simulated through 
the following recursive steps, which are initiated with 
p(zo = ilYo, 8) .  These recursions require one pass from 
t = 1 to n and then a second pass from t = n to t = 1. 

Step 1: Repeat for t = 1 ,2 , .. . , n. 
Prediction step: Calculate 

i=l 

Update step: Calculate 

Step 2: Simulate z, from p(zn = j lYn,8),the mass func- 
tion produced by the last update step. 

Step 3: Repeat for t = n - 1 , .. . ,2 ,1 .  
Given the draw zt+l = 1, calculate 

p(zt = jlYn,zt+l = 48) pjl x ~ ( z t= j lK,8),  
( j= 1,2) .  

Simulate zt from p(zt = jlYn, zt+l = 1,8).  

Note that the prediction step gives the time-varying prob- 
ability mass function required to calculate the likelihood 
function in (20) at the point 8*.  

Our results for this model and data are summarized 
in Table 5. These results are based on G = 6,000 
draws and rely on the prior distributions p l  - N(O,2), p2 
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- N(.75,2),a2 N 2G(4,4),q 1  Dirichlet(4, I), and q zN-Dirichlet(l,4). These priors are relatively vague and are 
designed to model the potential persistence in low and high 
growth rates. Thus the marginal likelihood is seen to be 
equal to -229.496 on the log scale and is accurately esti- 
mated with a numerical standard error of .028. In com- 
parison, the marginal likelihood is also calculated for a 
first-order autoregressive model yt = po + ,!Il ytPl + E ~ ,E~ 

N N(0 ,  a'), by treating this as a linear regression model 
after conditioning on the first observation. Under the prior 
(PI,P2) '  N2(0, diag(l0,lO)) and a2 - 26(3 ,3) ,  the log 
marginal likelihood is estimated to be -231.94. Thus the 
data support the Markov mixture model to the first-order 
autoregressive model. 

5. CONCLUDING REMARKS 

In summary, this article has developed and illustrated a 
new approach to calculating the marginal likelihood that 
relies on the output of the Gibbs sampling algorithm. The 
approach is fully automatic and stable, requiring no inputs 
beyond the draws from the simulation. Thus draws from the 
prior, or additional maximizations, or importance sampling 
functions, or any other tuning function, are not required. 
It was shown that the numerical standard error of the es- 
timate can be derived from the posterior sample and the 
calculations are exhibited in problems dealing with probit 
regression and finite-mixture models. In all the examples, 
the marginal likelihood is estimated easily and very accu- 
rately. As a result, this approach should encourage the rou- 
tine calculation of Bayes factors in models estimated by the 
Gibbs sampler. 

[Received May 1994. Revised February 1995.1 
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