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Summary. The major implementational problem for reversible jump Markov chain Monte Carlo
methods is that there is commonly no natural way to choose jump proposals since there is no
Euclidean structure in the parameter space to guide our choice. We consider mechanisms for
guiding the choice of proposal. The first group of methods is based on an analysis of accep-
tance probabilities for jumps. Essentially, these methods involve a Taylor series expansion of the
acceptance probability around certain canonical jumps and turn out to have close connections
to Langevin algorithms.The second group of methods generalizes the reversible jump algorithm
by using the so-called saturated space approach. These allow the chain to retain some degree
of memory so that, when proposing to move from a smaller to a larger model, information is
borrowed from the last time that the reverse move was performed. The main motivation for this
paper is that, in complex problems, the probability that the Markov chain moves between such
spaces may be prohibitively small, as the probability mass can be very thinly spread across the
space. Therefore, finding reasonable jump proposals becomes extremely important. We illus-
trate the procedure by using several examples of reversible jump Markov chain Monte Carlo
applications including the analysis of autoregressive time series, graphical Gaussian modelling
and mixture modelling.

Keywords: Autoregressive time series; Bayesian model selection; Graphical models;
Langevin algorithms; Mixture modelling; Optimal scaling

1. Introduction

The reversible jumpalgorithm (Green, 1995) is an extensionof the popularMetropolis–Hastings
algorithm, designed to allowmovement between different dimensional spaces. These algorithms
aremost commonly applied to (Bayesian)model determination problems (Dellaportas and For-
ster, 1999; Richardson andGreen, 1997; Fan and Brooks, 2000) though other applications exist
(e.g. Møller (1999) and Brooks et al. (2003)). We shall focus on the Bayesian model determi-
nation problem here and consider issues such as the choice of prior and specification of the
likelihood as beyond the scope of the paper. Thus, we are concerned solely with using reversible
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jump Markov chain Monte Carlo (MCMC) methods to obtain samples from some prespeci-
fied target distribution regardless of its derivation, although statistical considerations play an
important role in the methods that we introduce.
In practice, the application of reversible jump methodology has predominantly remained

within the domain of the MCMC expert, owing both to difficulties in constructing appropri-
ate algorithms and to a common perception that it is particularly difficult to implement. So,
though the scope for applications is vast, the full potential of this and similarmethodswill remain
unrealized until fundamental implementation aspects have been solved. Perhaps the greatest of
these is the problem of constructing proposed moves in complicated non-standard spaces, since
there is no natural neighbourhood structure between models to guide us.
The aim of this paper is to provide both a general framework for constructing these jumps and

for automating the process of choosing proposals efficiently. There are two main methodolog-
ical ideas to our approach. Firstly, we introduce a collection of techniques that can be used to
scale and shape proposal distributions automatically. Then, secondly, we extend reversible jump
methodology to amore general auxiliary variable (AV) frameworkwhich can be used to improve
Markov chain mixing properties by introducing temporary biases to assist the exploration of
the discrete model space.
We begin by introducing the general reversible jump MCMC methodology both to estab-

lish the notation to be used throughout the paper and to motivate discussion of the potential
implementational difficulties that are associated with the method.

1.1. Reversible jump Markov chain Monte Carlo methodology
In this subsection, we introduce reversible jumpMCMCmethodology in a fairly general setting.
Though the introduction of models is not strictly necessary at this stage, we suppose (to keep in
mind a motivating example in Bayesian inference) that we have modelsM1; : : :;Mk;: : :, where
modelMi has a continuous parameter space. The ideas that we develop can be easily extended
to the partially or totally discrete cases but we restrict our attention to only the continuous case
in this paper.
We write π.Mi;θi/ for the density part of our target distribution π restricted toMi. Thus, for

an arbitrary set B,

π.B/ =∑
i

∫
B∩Θi

π.Mi;θi/dθi:

We denote the parameter space for Mi as Θi and, with a minor abuse of notation, we write
θi (a vector of length ni) for a typical element of Θi. We focus on moves between Mi and Mj

with ni < nj. By reversibility, this also characterizes the reverse move, and moves between all
collections of pairs of models can be dealt with similarly.
Green (1995) provided the following general formulation for transdimensional jumps between

θi in modelMi and θj in modelMj. Given that the chain is currently in state .Mi;θi/, we pro-
pose a new value for the chain .Mj;θj/ from some proposal distribution Q.θi;dθj/, which is
then subsequently either accepted or rejected. Green (1995) showed that, if π.dθi/ Q.θi;dθj/
is dominated by a symmetric measure µ and has Radon–Nikodym derivative with respect to µ
given by R.θi;θj/, then detailed balance is preserved if we accept the proposed new state with
probability min{1;Ai;j.θi;θj/}, where

Ai;j.[Mi;θi]; [Mj;θj]/ = R.θj;θi/

R.θi;θj/
:
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The general formulation can be simplified in the context of most model selection problems
by restricting attention to certain jump constructions, as follows. To move from model Mi to
Mj, we generate a random vector V of length nj − ni consisting of variables drawn from some
proposal density ϕ.·/. We denote the joint density of V by

ϕnj−ni.v/ =
nj−ni∏
i=1

ϕ.vi/:

Having generated V, we now propose the move from θi to θj = fi;j.θi;V/, where the so-called
jump function fi;j : Θi × Rnj−ni → Θj denotes an injection, mapping the current state of the
chain together with the generated random vector to a point in the higher dimensional space.
This move is then accepted with probability

α{.Mi;θi/; .Mj;θj/} = min{1;Ai;j.θi;θj/};
where Ai;j takes the familiar form (Green, 1995)

Ai;j.θi;θj/ = π.Mj;θj/rji.θj/

π.Mi;θi/rij.θi/ ϕnj−ni.v/

∣∣∣∣@fi;j.θi; v/@.θi; v/

∣∣∣∣ .1/

and rij.θi/ denotes the probability that a proposed jump to model j is attempted at any par-
ticular iteration, starting from θi in Θi. For notational convenience, we shall refer to the final
(Jacobian) term in equation (1) as Jfij.θi; v/.
In the case where ni > nj, we just take

Ai;j.θi;θj/ = Aj;i.θj;θi/
−1:

In this paper, we shall focus mainly on this particular implementation of the general rever-
sible jump algorithm, since many practical applications adopt this form, and therefore all
our examples involve this special case. However, the methods and results provided here can
be extended to the more general case and we shall describe these using the saturated space
approach of Section 5 and Section 6.
Consider our motivating example where π is the posterior distribution over a collection of

modelsM1; : : :;Mk;: : :; with prior model probabilities p.M1/; : : :; p.Mk/; : : : respectively, and
within-model prior densities {pi.θi/; θi ∈ Θi}. Assume that within each model Mi the likeli-
hood is given by Li.data|θi/. Then, the target density is the corresponding posterior density
given by

π.Mi;θi/ ∝ Li.data|θi/pi.θi/p.Mi/: .2/

Many modifications, extensions and variations of reversible jump methodology exist. For
instance, a convenient mathematical framework for describing the composite state space for all
models is to use the state space of a suitable marked Poisson process. In this framework, the
target distribution can be written as a density with respect to a chosen marked Poisson process
measure. To move around such a space, it is natural to use birth-and-death processes (see for
example Preston (1977) and Ripley (1977)) and this is the approach that is used to simulate
interacting spatial point processes in Geyer and Møller (1994) and the considerable body of
work that leads from this (see for example the review of Kendall and Thonnes (1999)). This
approach was also used in Stephens (2000) and applied effectively to the problem of Bayesian
inference for mixtures with an unknown number of components.
An approach to transmodel dynamics, in which the algorithm stores a vector for each model

at every iteration, has been introduced by Carlin and Chib (1995) and recently extended to a
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general framework, which also includes the reversible jump algorithm as described above, by
Godsill (2001). As a direct extension of the reversible jump, Green and Mira (2001) introduced
a procedure for reassigning rejected moves by sequentially attempting further proposals us-
ing a modification of the usual accept–reject mechanism. This procedure allows some level of
adaptation in the sense that later proposals at any particular iteration can be allowed to use in-
formation gained from earlier rejections within that iteration. These and other related advances
are reviewed in more detail in Green (2002).
All these extendedmethodologies offer alternative frameworks in which to constructMarkov

chain dynamics to explore model space. However, beyond that, there has been little progress
in the problem of exactly how to construct proposal distributions. For algorithms on Euclide-
an spaces, the metric structure of the state space guides the construction of the proposal. For
instance for the random walk Metropolis algorithm on a continuous target density, using a
proposal distribution with variance σ2, very small values of σ2 will lead to small jumps which
are almost all accepted, whereas large values will lead to an excessively high rejection proba-
bility for proposed moves. Thus, the scaling problem will typically have an optimal value for
the proposal scale σ which lies between these two extremes. Although proposal distributions
can be refined in more subtle ways than by variance alterations, the restriction of the choice of
proposal problem to this one-dimensional problem is appealing, works well in practice and is
supported in part by currently available theory (see for example Roberts et al. (1997)).
The problem for reversible jump moves is that there is no direct analogue of this kind of

scaling problem, since there is no natural notion of a ‘local’ move with an arbitrary high accep-
tance probability. The approach of this paper is to translate natural ideas for the construction of
proposals (such as the scaling problem) from their natural Euclidean environment to the union
of model spaces.

1.2. Example: autoregressive model choice
To illustrate and motivate the methodology that we propose, we use a simple example of model
choice for autoregressive time series models of unknown order. Here we describe a standard
implementation of reversible jumpmethods to this problem (see for example Godsill (2001) and
Ehlers and Brooks (2002)).
Suppose that we have data x1; : : :; xT from an autoregressive process of unknown order. Let

modelMk correspond to the kth-order autoregressive process which is specified by the relational
formula

Xt =
k∑

τ=1
aτXt−τ + "t; t = kmax + 1; : : :; T ;

for k = 1;2; : : :; kmax, where "t ∼ N.0;σ2" /. To model the data, we assume a uniform prior for
k and within modelMk we take independent N.0;σ2a/ priors for the coefficients ai, i = 1; : : :; k
(thereby not imposing stationarity), and assume that σ2" takes an inverse gamma prior. In prac-
tice, we might wish to take a fairly large value for σ2a to reflect a degree of prior uncertainty
about the values that these parameters might take, though this may begin to affect the model
probabilities if σ2a is too large; see Berger (2000). We note that, if we had taken the normal–
inverse χ2 prior (Gelman et al. (1995), section 3.3) for the autoregressive parameters, then the
posterior marginals and even the posterior model probabilities would be analytically tractable.
However, for illustration, we shall adopt the priors described above and, since the issue of the
specification of the prior is not of direct relevance here, we shall not discuss such issues further
in this paper. We assume only that a model and prior have been prescribed and that we wish to
implement an efficient reversible jumpMCMC sampler to explore the corresponding posterior.
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The number of autoregressive parameters in model Mk is given by nk = k and we can write
θk = .a1; a2; : : :; ak/, dropping the σ2" -parameter which will be present in every model. The
posterior therefore comprises three terms: the likelihood

Lk.x|θ/ =
T∏

t=kmax+1
1√

.2πσ2" /
exp

{
− 1
2

(
xt −

k∑
τ=1

aτxt−τ

σ"

)2}
;

the multivariate normal prior for the autoregressive parameters and the uniform prior over
model order; k = 1; : : :; kmax. Note that we are using an approximate likelihood form here
(Ehlers and Brooks, 2002) and conditioning on the initial kmax observations under all models.
In this particular example, jumps take place only between nested models differing in dimen-

sion by 1 at most. Because of the nesting structure, a natural function fk;k+1 linking the two
parameter spaces is the identity, so

fk;k+1.θk; v/ = .θk; v/;

i.e. we set the new parameter in the larger model ak+1 = v. In this case, the determinant term in
equation (1) is simply 1.
Suppose that at any iteration we propose a jump from θk inMk to θk+1 = .θk; v/ inMk+1 with

probability rk;k+1 (independently of θk and with the reverse move having probability rk+1;k);
otherwise we propose a jump which decreases the dimension of the model by 1. Here, we might
simply choose to increase or decrease the model order with equal probability except at the
extremes, so that rk;k+1 = rk;k−1 = 1

2 if 0 < k < kmax, and r0;1 = rkmax;kmax−1 = 1.
If we propose to increase the dimension, wemight take as our proposal v ∼ N.0;σ2/ (we shall

look at more general proposals later) and applying expression (2) to equation (1) we obtain

Ak;k+1.θk;θk+1/ = Lk+1.x|θk; v/
Lk.x|θk/

pk+1.θk+1/
pk.θk/

rk+1;k
rk;k+1

1
ϕ.v/

; .3/

where ϕ.v/ = .2πσ/−1=2 exp.−v2=2σ2/. Since we have independent priors for the model pa-
rameters, the prior term in the denominator will cancel with the corresponding terms in the
numerator. These reversible jumpmoves will be interspersed with suitably chosen within-model
Metropolis–Hastings moves to explore the posterior.
The overall performance of the resulting algorithm will depend on our choice of proposal pa-

rameters. In particular, the ability to mix between models will depend heavily on our choice for
σ2. If the proposal variance is too small, jumps to simpler models will be rare, since the ϕ-term
(which will lie in the numerator for this move) will be small. By reversibility, the algorithm will
show an equal reluctance to perform the reverse move also. Similarly, if σ2 is too large, moves
increasing the dimensionality of the model will be rare, since the algorithm will propose many
values far from areas of high posterior support. In practice, σ2 is usually ‘tuned’ on the basis of
short pilot runs. However, for more complex problems, this can be (sometimes impractically)
difficult and time consuming.

1.3. General perspective
The reversible jump MCMC technique is a very general and widely applicable technique.
Markov chain convergence is assured under very weak conditions on the jump function fi;j
and the proposal density ϕ. However, very little is known about how to do this efficiently in
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a generic way. Although there has been considerable progress in this area for fixed dimension
sampling problems (see for example Gelman et al. (1996) and Roberts and Rosenthal (1998)),
most of the available statistical applications of reversible jump techniques rely on various strat-
egies of empirical tuning, as discussed above. In this paper we discuss a variety of general
recipes for choosing the jump function fi;j and for automatically scaling the proposal distribu-
tion ϕ.
There are two aspects to choosing successful algorithms: knowing roughly where to jump

to and choosing jump distribution parameters appropriately. We shall discuss the two issues
separately, bringing them together for our examples. Section 2 considers the first (qualitative)
problem, whereas the later sections are all concerned with quantitative issues.
In Section 2, we develop a framework which allows us to discuss current and new methods

for constructing reversible jumps. In particular, we consider the concept of moment matching
(Green, 1995), and we introduce the idea of ‘centring’ reversible jumps on moves which, for
example, may take advantage of what we call weak non-identifiability. We also introduce the
notion of conditional maximization as a device for targeting jumps to higher dimensional mod-
els into appropriate regions.
One of the main contributions of this paper is the introduction of an automatic method for

determining proposal parameters, based on an analysis of acceptance probabilities for these
jumps. The ideas of locating and scaling proposal distributions is described in detail, and all
the ideas are illustrated by using the simple autoregressive model choice example introduced
above. In Section 4 we extend this approach to consider more general analyses of the acceptance
probabilities for determining automatic scales and we provide some technical discussion on the
advantages of adopting these higher order approaches.
Throughout thepaper,wemake connections tomore familiar algorithmsonEuclidean spaces,

such as the random walk Metropolis and Langevin algorithms. This is because we can describe
such algorithms in terms of conditions on the acceptance probability formula, and these notions
can be easily transported to the reversible jump context.
In Section 5 we provide a generalization of the reversible jump algorithm by using the so-

called saturated space approach. This method allows the random seeds generated to increase
the dimensionality of the current model to be retained on the subsequent simplification of the
model. In Section 6, through artificially introduced dependences between these random seeds,
algorithms with a kind ofmomentum through model space can be generated, potentially aiding
mixing in hard problems with multimodality in the model space. We provide examples of the
implementation of these methods and illustrate the dramatic improvement in performance that
we observe in the context of several real applications.
There are three distinct settings which together describe the vast majority of current applica-

tions of reversible jumpMCMCmethods: variable selection, where we decide which parameters
should be included in a model, association selection, where we decide which interactions exist
between a fixed number of model parameters, and finally classification problems, where we
decide how to assign observations to different groups within a model. The implementational
details for our autoregressive example (as an illustration of a variable selection problem) are
discussed throughout the text and in Section 7.1 we report the results of the application of
these algorithms in the context of a particular data set. To illustrate the applicability and utility
of these methods further we also introduce more applications. In Section 8 we introduce an
example of association selection in the context of graphical Gaussian modelling, and in Sec-
tion 9 we introduce a classification problem by re-examining the mixture modelling problem of
Richardson and Green (1997), showing how the performance of the sampler can be improved
through the adoption of our proposed new methods.
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2. Centring and transforming proposals

Reversible jump algorithms offer no real mathematical generalization over traditional fixed di-
mensional Metropolis–Hastings methods; see for example Tierney (1998). However, in a sense
they are intrinsically more complex than methods on continuous distributions on Rk.
To see this, consider the case where π is a continuous density on Rk. The vanilla (or default)

algorithm that we might use to explore π is the random walk Metropolis algorithm, perhaps
proposing a move from x to x+V where the Vi ∼ N.0; ζ2/ say. The analogue of the acceptance
ratio (1) in this context is simply

A.x;x + V/ = π.x + V/
π.x/

:

Here A takes the value 1 at a central move corresponding to all of the Vi taking the value 0
and therefore proposing to remain at x. By continuity therefore, small jumps (i.e. where |V|
is small) are accepted with a very high probability and, importantly, so is the reverse move.
Thus, depending on π, a sufficiently small ζ2 defines an algorithm with a sufficiently high ac-
ceptance rate to allow the chain to move around the state space (though sometimes perhaps
rather slowly). See Gelman et al. (1996) and Roberts et al. (1997) for results describing the
relationship between the optimal choice of ζ2 (in terms of the corresponding convergence rate
of the chain) and the acceptance rate. Although none of these absolutely guarantees a useful
algorithm in practice, this all makes the tuning of algorithms (choosing ζ2) relatively straight-
forward. The existence of a centralmovewhereA= 1 is certainly not guaranteed in the reversible
jump framework, and the aims of the simplest algorithms that we introduce will be to ensure
that it does.
More sophisticated algorithms for target densities on Rk can improve the efficiency over ran-

dom walk Metropolis algorithms drastically. So-called Langevin algorithms (see for example
Roberts and Tweedie (1996)) use gradient information about π to propose candidate moves
which are more likely to be accepted. Specifically, given x the algorithm proposes a move to
x + V where

V ∼ N

[
0+ ζ2

2
∇ log{π.x/}ζ2

]
:

The usual way to motivate this choice of proposal is to consider the discretization of a suitable
Langevin diffusionwhich has π as its stationary distribution. In the context of choosing sensible
proposals, we note that this proposal leads to an acceptance ratio A which satisfies A.x;x/ = 1
and

@A.x;y/
@y

∣∣∣∣
y=x

= 0: .4/

Intuitively, this allows A to be close to 1 further away from x than for the random walk Met-
ropolis case, therefore allowing more ambitious jumps to be proposed and accepted. This
leads to improved mixing (see Roberts and Rosenthal (1998) for theoretical results on this).
In the reversible jump context, we shall show that it is possible to construct algorithms which

mimic the behaviour of these fixed dimensional examples in terms of the characterization given
in equation (4). In fact even higher order Langevin algorithms have analogues in the reversible
jump context and in Section 4 we demonstrate how these can be constructed.
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2.1. Constructing the jump function
We return to the general setting of Section 1.1.Within this framework, the jump function fi;j can
be chosen arbitrarily (subject only to certain differentiability properties that we shall need for
the methods that we introduce) though often some advantage is obtained by exploiting features
such as nesting and moment matching between models.

2.1.1. Example: nested jumps
Suppose that θi = .µ1; : : :;µni/ for a collection of parameters µi whose interpretation is either
unaltered in models of increased complexity or at least whose values are unlikely to change
much in moving from a smaller to a larger model. Then one natural set of constraints, when
proposing a move to a more complex model, preserves the values of all current parameters.

2.1.2. Example: moment matching
Suppose that θi = .µi1; : : :;µ

i
ni
/ and θj = .µ

j
1; : : :;µ

j
nj /. fi;j is often chosen with the aid

of an .nj − ni/-dimensional constraint, often on the basis of moment matching requirements
(Green, 1995). For example suppose that B is an ni × nj matrix; then we might wish to impose
the condition that Bθj = θi. The simplest example of this occurs where nj = ni + 1 and
the dimension matching constraints are µik = µ

j
k; k = 1; 2; : : :; ni − 1, and .µjni + µ

j
ni+1/=2 =

µini . A corresponding jump function might then be to set fi;j.θi; v/ = .µi1; : : :;µ
i
ni−1;µ

i
ni

−
v;µini + v/. In this way the first moment of the two new parameters matches that of the single
parameter that they replace.
As it happens, even for a given collection of dimension matching constraints, there is still

some flexibility in how to choose the jump function. We assume here that we are given some
collection of canonical jump functions {fi;j}, fi;j : Θi×Rnj−ni → Θj. For instance, in the nested
case above, it is natural to take fi;j to be the identity function. The proposed new state is then
given by

θj = hi;j.θi;u/ = fi;j
{
θi; vi;j;θi .u/

}
.5/

where vi;j;θi plays the role of a general proposal transformation of some canonical random vari-
able (seed) u. We typically choose vi;j;θi from a low dimensional family of functions. All that we
insist on is that vi;j;θi is invertible.
The function fi;j will be considered fixed in our search for an automatic proposal mechanism.

However, we still retain considerable freedom for the choice of vi;j;θi . This, and the following
section, will largely concentrate on strategies for the automatic choice of vi;j;θi which can be
adopted without additional computation and complexity inherent in the pilot tuning required
for many existing reversible jump applications.
Thus, in this general set-up, if q denotes a state-independent proposal for the canonical seeds

u, then the acceptance ratio given in equation (1) now becomes

Ai;j.θi;θj/ = π.Mj;θj/ rji.θj/

π.Mi;θi/ rij.θi/ qnj−ni.u/

∣∣∣∣@hi;j.θi; u/@.θi; u/

∣∣∣∣ : .6/

Once again, we shall refer to the final (Jacobian) term in equation (6) as Jhij.θi; u/ and, for nota-
tional convenience, drop the i-, j- and θi-subscripts on the majority of terms for the remainder
of the paper, since we shall always consider the case in which we move from state θi in model
Mi to some new state in modelMj.
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2.2. Centring proposals
To extend our mechanism for constructing reversible jump algorithms beyond the simple nest-
ed case, we require the introduction of a collection of centring functions. A centring function
ci;j : Θi → Θj can be specified by the equation

c.θi/ = f [θi; v{b.θi/}]
(dropping the subscripts on c), where b.θi/ ≡ bi;j.θi/ is some real-valued function, often taken
to be identically zero. Essentially, we are identifying a ‘special’ value b.θ/ for the proposal vec-
tor u and associating this with a point c in the higher dimensional space. We shall need such a
function between each collection of models for which we might attempt to jump. Intuitively, the
centring function should choose a ‘representative point’ on the image of h.θi; u/ from which to
extract information for the construction of v.
There are various possible strategies for constructing the centring functions by using statis-

tical or mathematical principles and we discuss some alternatives in Section 2.4. However, for
the moment we shall focus on a centring function defined according to so-called weak non-
identifiability, under which the probability model described by θi in Θi is identical with that
described by c.θi/ in Θj. As an illustration, in the autoregressive example of Section 1.2, the
weak non-identifiability centring for a move betweenMk andMk+1 is characterized by finding a
point b such that v.b/ = 0 and so c.θk/ = .θk;0/, since the k-dimensional model with param-
eters .a1; : : :; ak/ is identical (in terms of likelihood contribution) with the .k + 1/-dimensional
model with parameters .a1; : : :; ak;0/. Thus, it would be natural to centre any proposal for the
parameter vector in the .k + 1/-dimensional model about this point, which corresponds to the
k-dimensional model in the higher dimensional space.
To choose {vi;j;θi} for any particular problem, we propose a hierarchy of strategies in terms of

both ease of implementation and accuracy (ease decreases with increasing accuracy). Before we
discuss these strategies in detail, we note the alternative formulation of the approach described
above which we describe in Appendix A andwhich eliminates the need to use both f and h at the
expense of having more general state-dependent proposal densities. The notation that we adopt
here ismost appropriate for the scaling (and location) problems thatwe shall consider, because it
distinguishes the transformation problem (that of modifying v) from the more general problem
of choosing a link function between different dimensional spaces (that of choosing f ). Fig. 1
summarizes the notation that we shall use throughout the paper. Fig. 1(a) shows the random
variate u ∼ q and the point b.θi/ for a particular θi. These points are both mapped via the v-

Fig. 1. Illustration of the notation that is used in the paper, demonstrating the use of the functions v and f to
scale u and to move from Θi � R to Θj for i D 1 and j D 2 respectively
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function onto Fig. 1(b). Clearly this mapping depends on the current state θi. v.u/ and v.b/ are
then both mapped to points inΘj. v.b/ becomes mapped to the centring point c ∈ Θj, whereas
v.u/ becomes mapped to some point h.θi; u/. Different values of u would give rise to different
points along the broken line through cwith a value ofu = bmapping to the centring point. Thus,
the density q essentially becomes mapped to a density along the broken line through b in Θj.

2.3. Example: the autoregressive example revisited
Suppose that we wish to move from θk to θk+1 by generating a random value u ∼ N.0; 1/
independently of the state of the chain. Since the models here are nested, a natural choice is to
adopt the identity as the jump function f and to take a simple linear proposal transformation
v.u/ = σu. This then provides the same jump transition as described in Section 1.2. σ may
depend on k and/or θk, but we shall drop the notational dependence here for clarity.
Using weak non-identifiability centring, we choose b.θk/ = 0, since Lk+1{x|.θk; 0/} =

Lk.x|θk/ and the centring function is simply c.θk/ = .θk; 0/. In this case, the Jacobian term in
equation (6) is simplyσ, andwe obtain the acceptance probability in equation (3) by substituting
into equation (6).

2.4. The conditional maximization approach
Other centringmethods have recently been proposed in specific contexts. See for example Green
(2002) for results based on a Gaussian approximation and Ntzoufras et al. (2002) for applica-
tions to generalized linear models. Here, we introduce a general scheme which may be used
to augment any of the methods discussed in previous sections, removing an additional de-
gree of freedom by finding a sensible location for the proposal distribution. The conditional
maximization scheme improves on the non-identifiability centring scheme in that, whereas the
non-identifiability centring method is restricted to jumps between nested models, at least in
theory, the conditional maximization method can be applied in any setting.
The idea behind all our methods is to find proposal parameters that improve the chances that

the chain actually jumps from one model to the next. When considering where to jump to in the
higher dimensional space, an obvious place to locate the proposal is around posterior modes in
the higher dimensional model. The conditional maximization scheme proceeds by maximizing
the posterior distributionπ{Mj;h.θi;u/}with respect to u to obtain themaximizing value û, say.
Then our centring point is chosen so that c.θi/ = h.θi; û/. Thus, we are essentially conditioning
on the current state θi and centring at the posterior conditional mode. In practice, the value of
û is obtained by setting the derivative (with respect to u) of the log-posterior distribution under
the higher model to 0. To derive the remaining proposal parameters (typically, the scale at least)
we can use the scaling methods that are described in the next sections, centring at the posterior
mode.
The conditional maximization method provides an alternative to the weak non-identifiabil-

ity centring described above and is not restricted to the case where jumps occur only between
nested models. As an illustration, if we return to our autoregressive model, and we wish to
take u ∼ N.µ;σ2/, then using conditional maximization we would set µ to be the value of u
maximizing Lk+1.x|θi; u/pk+1.θi; u/, obtaining

µ =

T∑
t=kmax+1

(
xt −

k∑
τ=1

aτxt−τ

)
xt−k−1

T∑
t=kmax+1

x2t−k−1 + σ2" =σ
2
a

: .7/
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3. Automatic proposal scaling: the zeroth-order method

Here we shall introduce a simple and easy-to-implement method for automatically choosing
proposal scales. Suppose that we are currently in state θi; then we wish to choose a scale for the
proposal transformation v that can be used to generate a state in the new model, θj. We choose
the scale so that, for the jump between θi and its image inΘj under the centring function c.θi/,
the acceptance ratio given in equation (6) is identically equal to 1, i.e.

A{θi; c.θi/} = 1; .8/

More specifically, suppose that we constrain v to belong to the scaling family

v.u/ = σ × u; .9/

where σ ≡ σi;j;θi is a state-dependent scale parameter which may or may not be a standard
deviation in general. Then, rearranging equation (8) using the definitions of A in equation (6)
and v in equation (9), and by noting that

|Jh| = |Jf |
∣∣∣∣ @v@u
∣∣∣∣ ;

we obtain

σnj−ni = π.Mi;θi/ rij.θi/ q{b.θi/}
π{Mj; ci;j.θi/} rji{c.θi/}

1
|Jf .θi/| .10/

giving a solution σ .= σ.θi//. Here we use the abbreviation Jf .θi/ to denote the value of
Jf .θi; v/ at v = v{b.θi/}.
Setting A.θi;θj/ = 1 for certain ‘central’ jumps is normally a sound heuristic principle. For

generalMCMC algorithms, it is often automatically satisfied. For instance, in Euclidean spaces
the randomwalkMetropolis algorithm on a continuous density will haveA close to 1 for all suf-
ficiently small jumps. Moreover, more sophisticated algorithms (for instance the hybrid Monte
Carlo procedure of Duane et al. (1987)) can often be motivated in terms of arguments that try
to fixA to be equal to, or approximately equal to, 1, for appropriately chosen jumps. For revers-
ible jump algorithms, the lack of Euclidean structure in the state space means that obtaining
A.θi;θj/ = 1 for appropriate jumps is not automatic. The zeroth-ordermethod described above
ensures that the acceptance probability does equal 1 for centred jumps between θi and c.θi/.
Further discussion of the ideas motivating the zeroth-order method appears in Section 3.2.

3.1. The zeroth-order method for Bayesian applications
To apply our procedure, we need to specify the functions f and c.θi/ for all collections ofmodels
Mi andMj between which jumps might conceivably be proposed.
In the important situation where the distribution to be sampled has a density which can be

decomposed as the likelihood times the prior, and where we have the option of using weak
non-identifiability centring, a useful strategy for specifying c.·/ proceeds in the following way.
Suppose that there exists b.θi/ such that Li.data|θi/ = Lj[data|f{θi; b.θi/}]; then set c.θ/ =
f{θi; b.θi/}. A location shift in f ensures that there is no loss of generality in taking b.θi/ = 0
as the weak non-identifiability centring point.
Using weak non-identifiability centring, equation (10) reduces to

Rnj−ni = pi.θi/p.Mi/rij.θi/q{b.θi/}
p.Mj/pj {c.θi/}rji{c.θi/}

1
|Jf .θ/| .11/

which is independent of the likelihood entirely. Of course this approach can be generalized to
the situation where alternative factorizations of the target density are possible and centring
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can be performed in any manner that allows a particular term to cancel. Beyond the statistical
context there is then no particular reason to think that the centring point that is produced by
this method is a sensible location about which to construct the proposal distribution. However,
within the statistical context with non-identifiable centring, this choice of centring function is
entirely natural.
The fact that the likelihood drops out of equation (11) provides an important computational

advantage in situations where the likelihood is expensive to compute, but it means that the pro-
posal is being tailored to the prior rather than the posterior. When the prior and posterior are
similar (as in the graphical Gaussian model example described later), the zeroth-order meth-
od provides a very simple and efficient proposal-generating mechanism. However, the zeroth-
order method may perform poorly when the prior and posterior differ greatly. In such cases,
the method may be improved if we can also incorporate information from the data in choosing
the proposal scales. A natural way to do this is to consider higher order approximations, as we
shall see in Section 4.

3.1.1. Example: the autoregressive example revisited
Applying weak non-identifiability centring and the zeroth-order algorithm to the autoregres-
sive example introduced in Section 1.2, and adopting the identity jump function f with simple
linear scale function v.u/ = σu, the acceptance ratio at the centring point, .θk; 0/ in equation
(6) reduces to

A{θk; .θk;0/} = pk+1.θk;0/
pk.θk/

p.Mk+1/
p.Mk/

rk+1;k
rk;k+1

σ

q.0/
: .12/

Setting the acceptance ratio to 1, equation (12) becomes

A{θk; .θk;0/} = 1
.2πσ2a/

1=2

rk+1;k
rk;k+1

σ

.2π/−1=2
= 1; .13/

which can be solved to obtain

σ2 = σ2a

(
rk;k+1
rk+1;k

)2
: .14/

As pointed out above, the resulting proposal variance is independent of the data and so only
information from the prior is used to tune the proposal distribution in this case.

3.2. In support of the zeroth-order method
The acceptance probability of any proposed move is a non-decreasing function ofA, so it might
be tempting to think that, the higher A is, the better the algorithm’s prospects of traversing the
state space effectively.However, ifA is large, then the reciprocal ofAwill be small and the reverse
move becomes unlikely. Thus, by setting A= 1 we simultaneously maximize the probability of
both the forward and the backward moves. The following example illustrates this further.
Suppose that we have two disjoint spaces, Θ1 and Θ2, with target probabilities p and 1 − p

respectively. IfΘ1 andΘ2 were just single-point spaces, the optimal Markov chain (in the sense
of minimizing the transition matrix’s second eigenvalue) which mixes throughout the space has
transition matrix

P =
(
1−min{1; .1− p/=p} min{1; .1− p/=p}
min{1; p=.1− p/} 1−min{1; p=.1− p/}

)
; .15/
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i.e. this transition matrix minimizes the eigenvalue over all transition matrices with .p;1 − p/

as the stationary distribution. Either the transition from Θ1 to Θ2 or its reverse (or both)
has probability 1. To proceed further we need to impose a little more structure on the state
space.
Now, suppose that Θ = Θ1 ∪ Θ2 with Θ1 = {e} and Θ2 = [0; 1]. Let π.e/ = p, and

π.u/ = .1 − p/;0 � u � 1. Consider the algorithm which attempts to jump from model i to
model 3− i (alternating with within-model moves which sample independently from the distri-
bution constrained within that model). Let the proposal density be U.0; 1/ if we are currently
inM1 attempting a move to the one-dimensional spaceM2, and all moves fromM2 just attempt
to jump to e. Now for the move from Θ1 to Θ2 we propose a uniform candidate on the interval
. 12 − R=2; 12 + R=2/ and from equation (10) the zeroth-order method is selected by choosing
R = p=.1 − p/. If p > 1

2 , this occasionally selects moves outside the support of Θ2—in fact
this happens with probability 1 − .1 − p/=p. In this case the reverse move is always accepted.
Conversely, if p < 1

2 , then all moves from θ1 to Θ2 are accepted, whereas reverse moves are
only accepted from u-values within . 12 −p=.2−2p/; 12 +p=.2−2p//. In either case, the process
describing the current model state is in factMarkov and has the optimal transition probabilities
described by equation (15).
Therefore, in adopting the zeroth-order method, we obtain the best possible mixing between

models. (Note that this optimality is also related to the optimality of the Metropolis–Hastings
rule among all accept–reject procedures; see Peskun (1973).) Of course if we knew p a priori (in
the case p > 1

2 for instance) we could design a different sampler which only attempted to move
fromΘ1 toΘ2 with probability .1−p/=p. Such a scheme would also achieve the optimal transi-
tion probabilities between models described in equation (15), and this would avoid the need to
propose ridiculous moves, and therefore leading to some computational savings. However, in
general, we shall not know p so such a strategy is not practically implementable. In this example
it turns out that R for the zeroth-order method is in fact a function of p, but this is calculated
directly from the probability of the jump between centring points, and not on the basis of the
probability mass contained in each model.
Practical examples will never be as clear cut as this. It will be very rare that the model in-

dicator itself will be a Markov chain for instance. However, the example illustrates what the
zeroth-order method is attempting to achieve.

4. Extending the method

The zeroth-order method can be naturally extended by considering higher order expansion
terms. The idea of trying to obtain A as close to 1 as possible can be used to motivate more
sophisticated choices of proposal. One obvious way to extend the method is not only to fix A
to take the value 1 at some chosen central value but also to stipulate that some of its derivatives
be 0 at that central value also, so that A remains close to 1 within a region around this point.
We begin by extending the zeroth-order scheme described in the previous section.

4.1. The first-order method
We now describe the simplest possible extension to the zeroth-order method, which we call the
first-order algorithm. With A defined as in equation (6), this method satisfies both equation (8)
and

∇A{θi; c.θi/} = 0 .16/
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for all possible choices of i, j and θi. Here ∇ is taken with respect to u, and therefore equation
(16) imposes an .nj − ni/-dimensional constraint on the proposal. In practice, it is often easier
to specify the derivative constraints in terms of the logarithm of the acceptance ratio.
This method can be thought of as the reversible jump analogue of the Langevin algorithm

which is characterized by an equation similar to equation (16). Langevin algorithms tend to
have considerably superior convergence properties than simpler zeroth-order methods (see for
example Roberts and Rosenthal (1998)). This is because the algorithm takes into account
local fluctuations in the shape of the target density and adjusts the target as a result. In
addition, since the acceptance ratio is 1 except for a quadratic error (as opposed to linear
in the zeroth-order case), larger jumps can be attempted without leading to acceptance rates
close to 0.
As with the zeroth-order algorithm, we fix f and try to find a proposal density to satisfy both

equation (8) and equation (16) simultaneously. Of course there are many different ways to do
that. We give the following approach as an example.

4.1.1. Example: first-order Gaussian proposals
Suppose that nj − ni = 1. Then equations (8) and (16) together introduce a two-dimensional
constraint on the proposal density. To satisfy these two conditions we need to consider only a
class of distributions with 2 degrees of freedom. There are many possible choices for this, but
we illustrate the idea with one of the most natural choices.
Suppose that we take u to be standard Gaussian and define v to be the linear function

v.u/ = µ + σu:

Then, as long as the various density terms have analytically available first derivatives, equations
(8) and (16) have easily available solutions. Note that solving ∇ log[A{θi; c.θi/}] = 0 is usually
easier than directly working with equation (16). A detailed worked example is given in Section
4.3, and a second generic family of first-order methods, using triangular shape proposals, is
described in Appendix A.

4.2. Higher order methods
Anextension to higher ordermethods need not stop at the first derivative.Wemay also set higher
order derivatives to 0. Broadly speaking (at least for suitably differentiable target densities), as
we set increasingly more derivatives to 0 we obtain acceptance probabilities which become in-
creasingly closer to 1, at least in some neighbourhood of the centring point. However, usually
additional computational costs are associated with the implementation of these higher order
methods.
In practice, our proposal density will typically have only a few parameters which need to

be selected. Given a proposal with r parameters we only need r constraints to specify those
parameters. If we add additional constraints, then it may not be possible to solve all of them. As
we shall see in the autoregressive example in Section 4.3, given a proposal with two parameters,
these parameters may be set by taking the zeroth- and first-order constraints or by taking the
first- and second-order constraints for example. In fact any combination of two constraints
could be used and there is evidence to suggest that the flatness of the acceptance ratio is perhaps
more important than its being closer to 1.We return to this point in greater detail in Section 4.4.
In practice the choice of constraints may depend on analytic tractability and/or computational
complexity.
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4.3. Example: the autoregressive example revisited
We begin with the basic first-order method described by the simultaneous solution of equations
(8) and (16) to obtain both a location and scale for the proposal transformation v.u/ = µ+σu,
i.e. v = v.u/ ∼ N.µ;σ2/. SettingA = 1 and the derivative of log.A/ to 0 at the non-identifiability
centring point u = 0, we obtain

µ

σ2
= 1

σ2"

∑(
xt −

k∑
τ=1

aτxt−τ

)
xt−k−1

and

1
σa

rk+1;k = 1
σ
exp

(
− µ2

2σ2

)
rk;k+1:

These are clearly analytically intractable, presenting the drawback that the equations require
numerical solution and therefore incur additional computational expense. (In fact, in this case,
the additional expense is fairly minimal (see Section 7.1), but this may not generally be the
case.)
An alternative is to consider a second-order term and to set the first- and second-order deriv-

atives of A to 0 at the non-identifiability centring point u = 0, ignoring the zeroth-order term.
Simultaneously solving these two equations, we obtain the value of µ given in equation (7) and

σ2 = σ2"
T∑

t=kmax+1
x2t−k−1 + σ2" =σ

2
a

:

These values for µ and σ2 both have plausible statistical interpretations. For the second-order
method, µ is a function of the estimated squared correlation coefficient, of order k, between the
residuals from the fittedAR(k) model. Recall that the squared correlation coefficient determines
the maximum likelihood estimate for ak+1 and so the proposal is approximately centred at the
maximum likelihood estimate. However, the variance σ2 is the ratio between the model vari-
ance and the estimated variance. If the data are not particularly informative then the proposal
variance increases.
We note also that the second-order proposal is the conditional posterior distribution of

the new parameter ak+1 under the larger model Mk+1 conditioning on the remaining pa-
rameters being unchanged. This corroborates the empirical observations of Troughton and
Godsill (2001), who suggested that using the conditional distribution to propose the value
of new parameters is particularly efficient and they went on to show that the proposal and
acceptance ratio can be simplified in this case. We also note that this result generalizes to jumps
between models differing by more than one dimension. For example, if we wish to move from
model Mk to model Mk′ where k; k′ ∈ {1; : : :; kmax} and k′ > k, using a multivariate nor-
mal proposal for the new variables (as suggested by Troughton and Godsill (2001)), then the
second-order method provides the posterior conditional distribution of these new parameters
conditioning on the rest, which remain unchanged. Of course, these methods may be extend-
ed further (Ehlers and Brooks, 2002) to the case in which the moves to smaller dimensional
models are not deterministic, by simply differentiating the acceptance ratio with respect to
all the u-terms that appear in either the numerator or denominator. See Brooks et al. (2003) for
discussion of this generalization beyond the Bayesian model determination context.
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Finally, if we wish to consider the conditional maximization method, we take the µ given in
equation (7) and by centring at this point and using the zeroth-order method we obtain

σ2 = σ2a

{
r.k; k + 1/
r.k + 1; k/

}2
exp

{−µu
T∑

t=kmax

(
xt −

k∑
τ=1

aτxt−τ

)
xt−k−1

σ2"

}
:

Thus, we obtain a variance term that is similar to the zeroth-order solution.

4.4. In support of first- and higher order methods
For Euclidean state spaces, Langevin algorithms can be shown to have large computation-
al advantages over corresponding zeroth-order methods in high dimensional problems; see
Roberts and Rosenthal (1998). However, it is difficult to prove rigorous results to support the
use of the first- and second-order methods in the general framework of this paper. Neverthe-
less, it is possible to make some progress, at least in simple stylized examples. Even for these
toy examples, the results do not appear to be totally intuitive, and they give support to the
notion of attempting to construct algorithms which have little variation in acceptance prob-
abilities (i.e. having first- and higher order properties but not necessarily zeroth-order prop-
erties). This idea is verified empirically in the autoregressive case by the results provided in
Section 7.1.
Theanalysiswill use anotion called capacitance (Lawler andSokal, 1988),which iswell known

to be closely related to the rate of convergence of a Markov chain by Cheeger’s inequality as we
shall see. We define the capacitance of a reversible Markov chain by

κ = inf
A

{∫
A

π.dx/ P.x;Ac/

π.A/

}
= inf

A
{κ.A/}; .17/

say, where the infimum is taken over all measurable setsA such that π.A/ � 1
2 . Here P.x;A

c/ =
P.X1 ∈ Ac|X0 = x/ for a Markov chain X and κ.A/ just describes the probability of moving
from A to Ac, for a chain started at stationarity within A. Cheeger’s inequality tells us that, if r
is the supremum of the spectrum of the Markov chain transition operator (i.e. usually its rate
of convergence), then

1− 2κ � r � 1− κ2=2:

See Brooks and Roberts (1999), for example in the context of MCMC methods.
This result tells us that a surrogate for convergence of a Markov chain is its capacitance,

although we cannot precisely identify a chain’s rate of convergence from its capacitance. There-
fore, it is natural to attempt to construct algorithms with the largest possible capacitance (de-
creasing both the lower and the upper bounds on the convergence rate) and in simple reversible
jump settings we can identify these algorithms and characterize them in terms of first-order
properties of the Markov chain.
The following result returns to the example of Section 3.2 in the context of which we can

discuss reversible jump and our methodology in a non-trivial situation, where transitions are
being constructed between spaces of dimension 0 and 1.

Lemma 1. Suppose that Θ = Θ1 ∪ Θ2 with Θ1 = {e} (where e is some arbitrary singleton
not contained in [0;1]) and Θ2 = [0;1]. Let π.e/ = p and π.u/ = .1 − p/ f.u/ for some prob-
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ability density function f on [0;1], i.e. π.x/ = p δe.x/+ .1−p/ f.x/ where δe.·/ denotes a point
of unit mass at e. Consider the algorithmwhich always attempts to jump from the current model
to the other (i.e. without any within-model moves). Let the proposal density be q if we are cur-
rently in space M1 attempting a move to the one-dimensional space M2, and all moves from
M2 just attempt to jump to e. Then, among all possible choices of q, the capacitance of the
algorithm is maximized by the choice q = f .

The proof is given in Appendix B.

Remark 1. In the language of this paper, this result can be restated as saying that the algorithm
which maximizes capacitance is kth order for all k � 1, but not for k = 0. This is because the
maximizing algorithm (with q = f ) leads to an acceptance ratio of A1;2 = .1− p/=p. Clearly,
the derivatives of this are all 0, but the acceptance rate itself will only be 1 if p = 1

2 . Thus, the
optimal algorithm is kth order for k � 1, but not zeroth order. A first- and/or second-order
method may be a good approximation to this optimal algorithm in specific cases.

An alternative to the kth-order approaches described so far can be developed by adopting
a saturated space approach which allows the chain to retain information when going from a
larger to a smaller model which can be used when returning to that model later. This approach
is discussed in the next section.

5. The saturated space approach

The saturated space approach involves augmenting the state space of the Markov chain so that
the dimension of the chain remains constant throughout the simulation. At any given time,
some of the states of the chain will correspond to model parameters and the rest can be used to
retain information about where the chain has been in the past. In particular, if we move from a
larger to a smaller dimensional model, information can be retained so that, when we return to
the larger model later in the simulation, we can use this information to ensure that we propose
jumping to a sensible place.
We shall introduce the saturated approach in the context of arbitrary reversible jump dynam-

ics, so that moves to lower dimensional spaces are no longer confined to be deterministic, as is
assumed in Sections 2 and 3.

5.1. Augmenting the state space
Suppose that supi.ni/ = nmax < ∞ and let .Mi;θi/ denote a random variable distributed
according to π. Define a collection of dual random variables conditional on the value of .Mi;θi/
in the following way. Given .Mi;θi/, let ui;r; ni + 1 � r � nmax be a collection of univariate
random variables with joint density qnmax−ni with respect to .nmax − ni/-dimensional Lebesgue
measure and which is independent of the current value of θi except its dimensionality. We shall
write ui = .ui;ni+1; : : :; ui;nmax/. Also suppose that wk; 1 � k � nmax, are an independent and
identically distributed collection of random seeds each drawn from density r.·/. The us play the
role of ‘dimension saturation’, whereas the ws provide a source of additional randomness in the
between-model move.
Given Mi, .θi;ui/ describes an nmax-dimensional random vector with joint density with

respect to nmax-dimensional Lebesgue measure given by

πaux = π.Mi;θi/qnmax−ni.ui/
s∏

k=1
r.wk/ .18/
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for some integer s � nmax. This approach is similar to that described by Besag (2000), but we
use this set-up to construct more flexible families of algorithms through the use of dependence
structures between AVs.
The saturated space approach is quite different from the product form construction that was

introduced by Carlin and Chib (1995), though it has some similarities to the generalization of
that approach described by Godsill (2001). Our approach differs from that of Godsill (2001) in
that the dimension compensating components stored are not specific to a particular statistical
parameter and can be used to generate moves to different (perhaps non-nested) models. In the
nested case, our approach is very similar to that of Godsill (2001). Here we add sufficient AVs to
augment the dimensionality of the space to equal that under the ‘largest’ model under consid-
eration. Note the distinction from the product space construction which requires the algorithm
simultaneously to store a parameter vector for each model under consideration. The saturated
space approach also removes the need for the pseudopriors that are necessary for the product
space implementation, as well as having the obvious computational advantage in that far fewer
AVs are required.
Under this saturated space arrangement, the Markov chain simulation proceeds in three

stages at each update. First we update the states corresponding to the model parameters under
the current model, i.e. θi. This can done in the usual way by using some form of Metropolis–
Hastings update for example. Next we update the elements of ui and w by any procedure which
preserves the stationary distribution of ui and w conditionally on θi. Finally, we update the
model by using a reversible jump step, which is now of fixed dimension.
The most straightforward way of updating the random seeds ui and w is to replace them

with independent draws from their known distributions but, as we shall see in Section 6, other
interesting alternatives are available. However, here we shall restrict ourselves to the case where
the random seeds are updated independently of their previous values.
Here there are different bijective maps between model spaces depending on the random seed

w that is chosen. These we denote by hwi;j.θi;ui/ with the acceptance probability of moves still
described by equation (6) (with a single superscript added to h in the Jacobian term).

5.1.1. Example: autoregressive example revisited
Here we might choose to take hwi;i+1.θi;ui/ = .θi + .w1; : : :;wi/;Runmax−i/ for some appropri-
ate scaling constant R. The choice of R can be decided by using an appropriate zeroth-order
method satisfying equation (8). Note that, although centring functions can also be chosen to be
dependent on w, we shall assume that this is not the case. So the simplest possible zeroth-order
algorithm just fixes w and scales vi as in Section 3. Of course it is possible to come up with more
complex choices for satisfying equation (8) which scales w as well as v.

6. Serially correlated random seeds

The retention of the random seeds that are used to update theMarkov chain allowsmore flexible
move types to be easily constructed here. We shall introduce a collection of AV methods within
the saturated space framework. With these methods, mixing around model spaces can be as-
sisted by ‘momentum’ induced through the AVs themselves. Within Euclidean and simple finite
space contexts, there is considerable empirical and theoretical evidence for the effectiveness of
similarlymotivatedAVmethods (see for exampleDuane et al. (1987) andDiaconis et al. (2000)).
We now introduce two examples of how the increased flexibility of the saturated space

approach can be used to construct new Markov chain dynamics which have the potential to
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provide improved between-model communication. We describe two distinct applications of the
saturated state space approach. The first introduces a memory property to the chain by direct-
ly inducing temporal dependence between the u-vectors through the use of an autoregressive
updating scheme which retains complete independence between elements of the u-vector. The
second creates a form of momentum by introducing dependence between the elements of the
u-vector and giving the chain a propensity to make certain types of move for a period of time.
We begin by describing the first, which we call the independent AV method. Since none of our
examples need the extra generality, for simplicity of notation we shall avoid the use of w as
introduced in Section 5 by setting s = 0.

6.1. The independent auxiliary variable method
Thevanilla reversible jumpalgorithmproceedsbygenerating the elements of theu independently
both of one another and of the values generated for previous iterations. In this subsection, we
begin by introducing temporal dependence between the u-vectors, through the use of an autore-
gressive updating procedure. In practice, this provides the algorithm with a form of short-term
memory. Essentially, when wemove from a larger to a smaller model, information regarding the
final position in the larger model is stored in the u-vector. If the reverse move is proposed, then
this information can be used to ensure that a sensible jump is proposed. However, alternative
moves (perhaps to a different mode, for example) may also be desirable, and so this memory is
designed to be short lived, essentially reverting to the vanilla reversible jump scheme over time
if the reverse move fails to be accepted. Obviously, this autoregressive updating scheme induces
slower convergence for the AVs and there is, therefore, a trade-off between the length of the
memory property of the algorithm and the ability to propose moves to entirely new places in
the larger model.
Here, we suppose that, given .Mi;θi/, the ur; ni + 1 � r � nmax are a collection of indepen-

dent univariate random variables each with density q with respect to Lebesgue measure. Thus,
the joint density in equation (18) becomes

πaux.Mi;θi;ui/ = π.Mi;θi/
nmax∏

k=ni+1
q.ui;k/:

Suppose that we have a collection of injective maps {hi;j : .i; j/ ∈ E} where E = {.i; j/ :
rij.θi/ > 0 for some θi ∈ Θi} denotes the set of pairs .i; j/ for which jumps between mod-
els Mi and Mj are allowed. For a particular pair .i; j/ such that ni < nj, the jump function
hi;j : Θi × Rnmax−ni → Θj × Rnmax−nj is a bijective map that fixes ur, nj + 1 � r � nmax, i.e. if
hi;j.θi;ui/ = .θj;uj/ then ui;r = uj;r∀nj + 1 � r � nmax. Finally, we set hj;i = h−1

i;j .
Given that the current state of theMarkov chain is .Mi;θi; ui/, then the algorithm chooses an

element at random from {l : .i; l/ ∈ E}, j say, and proposes the move to hi;j.θi; ui/ according to
the probabilities ri·.θi/. The move is then accepted with probability α{.Mi;θi; ui/; .Mj;θj; uj/}
= min

{
1;Ai;j.θi;ui; θj;uj/

}
, where

Ai;j.θi;ui; θj;uj/ = π.Mj;θj/ rji.θj/

π.Mi;θi/ rij.θi/
nj∏

r=ni+1
q.ui;r/

|Jhi;j.θi; u1;ni+1; : : :; ui;nmax/|: .19/

Here θj = hi;j.θi;ui/. Note the strong similarity with the acceptance ratio given in equation
(6). Obviously, for ni > nj the acceptance probability is given by

α{.Mi;θi;ui/; .Mj;θj;uj/} = min{1;A−1
j;i .θj; uj; θi; ui/}:
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Furthermore, jumps between models of the same dimensionality leave the AVs unchanged and
so we just resort to standard Metropolis–Hastings transitions.
Combined with a positive recurrence property of all algorithms updating within eachΘi, the

overall algorithm is suitably positive recurrent. Here the u are playing the role of the random
draws from the proposal distribution used to do reversible jump MCMC sampling. However,
including them explicitly in the target density provides us with additional flexibility in con-
structing algorithms depending on how we update the u. However, we can move beyond the
vanilla reversible jump algorithm by adopting a Markov updating scheme for the elements of
u. This can be done in any manner of ways. We illustrate one approach in the context of the
autoregressive example.

6.1.1. Example: autoregressive example revisited
We may update the elements of u in any manner which ensures that their stationary distribu-
tion is that specified for q. An alternative to the vanilla algorithm above is to use any Markov
scheme which produces the correct stationary distribution. In many cases, Metropolis–
Hastings moves may be used to update u, but in other contexts more direct methods may
be applied. If, for example, we choose the standard Gaussian distribution to be our station-
ary distribution q, then we might use an autoregressive process to update the elements of u as
follows.
Suppose that we are currently in modelMk (where k � kmax) and that we need to update each

of the elements uk;k+1; : : :; uk;kmax . We may consider each in turn (since we are assuming that
they are independently—and identically—distributed). Let us consider the update for uk;r. If
we take a new value for this variable (u′

k;r, say) such that

u′
k;r = λuk;r +N.0; 1− λ2/;

for some λ ∈ [−1;1], then the stationary distribution of this process is the standard normal
distribution which we would adopt as our density q. Of course, u′

k;r need not exist on the whole
real line, in which case an alternative process and stationary distribution would be required.
In the context of the autoregressive example and considering a jump from .θk; uk/ to .θk+1,

uk+1/, wemight use a combination of the zeroth-ordermethod and the uncorrelatedAVmethod
above, by setting θk+1;k+1 = σuk;k+1. Recall, that the zeroth-order method suggests scaling the
standard normal distribution by σ, given in equation (14). Thus, the q-term in equation (12)
is simply a normal density with zero mean and variance σ2. Note also that when doing the
reverse move we would set uk;k+1 = θk+1;k+1=σ. Of course, this idea can easily be extended to
the second-order method by simply setting θk+1;k+1 = µ + σuk;k+1, for example.
The desirable properties of the uncorrelated AV described above can be plainly seen in the

context of this example. Suppose that we go from model k + 1 to model k; then the old value
of ak+1 is stored as uk;k+1. As the simulation continues, this value will continue to be updated.
However, if λ is close to 1, then movement will be very slow and, if the reverse jump is proposed
(from k to k + 1) relatively quickly, then the proposal will be to move to somewhere close (in
terms of the value of ak+1) to where it was when it last left that model.
Thus, as described above, the uncorrelated AV algorithm provides the chain with a form of

memory, making it easier to move between models. Of course, the length of this memory de-
pends on the value of λ. The larger the value, the longer thememory. Obviously, if we implement
the kth-order AV method, but take λ = 0, we obtain just the kth-order method. We examine
the performance of these algorithms, as the value of λ varies, in Section 7.1.
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6.2. The correlated auxiliary variable algorithm
In this section, we extend the uncorrelated AV method to introduce dependence between ele-
ments of the u-vector as well as the temporal dependence induced by the uncorrelated approach
described above. Here, rather than the explicit use of the autoregressive updating scheme to
induce temporal dependence, we use the single-parameter Gibbs sampler to update highly cor-
related AVs. Thus, we make use of the usually undesirable property that is inherent in the Gibbs
sampler that individual updates of highly correlated parameters create a slowly mixing chain.
See Roberts and Sahu (1997), for example. In addition, the introduction of a degree of corre-
lation between the AVs can be used to encourage certain types of move at certain times. This
introduces a kind of momentum since there will be periods in which the AVs are ‘lined up’ to
promote (for instance) either model complexity or parsimony. This may be particularly useful
in the presence of multimodality, as observed in the mixtures problem described in Section 9
for example.
The motivation behind the correlated AV approach is that often there are models of com-

parable complexity, but for which traversing between the two models is very difficult since
intermediate states are very weakly supported by the data. However, traversing between these
states might be made considerably easier by following a path through a collection of much
simpler models. The correlated AV allows the Markov chain occasionally to make an excursion
to an extremely simple model from which it might return to the ‘other model’ once complexity
is restored. Thus, this method can be thought of as a kind of tempering (Marinari and Parisi,
1992), where the role of temperature is played by the propensity of the AVs to promote parsi-
mony, and where the temperature change is assisted by the momentum introduced. The use of
auxiliary momentum variables has been successfully used in other MCMC contexts, particu-
larly in the physics literatures; see for example Duane et al. (1987) and Neal (1996). Diaconis
et al. (2000) have given compelling theoretical arguments in toy examples for the usefulness of
these techniques.
Though the method is more generally applicable, we restrict our attention to a Gaussian

formulation for illustration. The basic idea is to assume that the ui;r random variables are ex-
changeable with distribution N.0;Σi/ where Σi denotes the i-dimensional covariance matrix
in which all variables have unit variance and the covariance between any two is ρ. As before,
the algorithm alternates between updating ui according to any Markov chain which preserves
qnmax−ni and proposing model jumps in the usual way. In this case equation (19) is modified
slightly to give

Ai;j.θi;ui; θj;uj/ = π.Mj;θj/rji.θj/qnmax−nj .unj+1; : : :; unmax/
π.Mi;θi/rij.θi/qnmax−ni.uni+1; : : :; unmax/

|Jhi;j.θi; ui;ni+1; : : :; ui;nj /|:

The steps used to update ui can be carried out in a variety of ways. One natural scheme is to
update the variables singly by Gibbs sampling. In this case,

ui;r|ui;.r/ ∼ N

[
ρ
∑
s �=r

ui;s

1+ .d − 2/ρ
;
.1− ρ/{1+ .d − 1/ρ}

1+ .d − 2/ρ

]
;

where ui;.r/ denotes the vector ui with the rth element removed and d is the dimension of the
ui-vector, i.e. d = nmax − ni. As with the uncorrelated method, the correlated auxiliary and
kth-order methods may be combined and we shall demonstrate this in Section 7.1.
Of course, it may not always be possible to bound the dimensionality of the ‘largest’ model
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under consideration. In this case we need to extend the method described above to allow for the
inclusion for a large or possibly infinite number of AVs.

6.3. The infinite correlated auxiliary variable method
Since nmax in Section 6.2 can be replaced by any larger integer, a natural possibility is to consider
the case where we have an infinite collection of AVs. This allows us to consider the case where
the dimensionality of the models under consideration is unbounded. By de Finetti’s theorem,
in the exchangeable case, this can be reformulated hierarchically as follows.
Suppose that Y is an N.0;ρ/ variable and, conditional on Y , we set each ui;r to be indepen-

dently N.Y;1 − ρ/. This formulation is particularly attractive for the correlated AV method,
since we can assume that we have this infinite collection u, though we store only as many as
we need. If we need a new one, we just generate it from its distribution conditional on Y . In
this case the acceptance ratio for a move from smaller dimension ni to larger dimension nj is
described by

Ai;j.θi;ui; θj;uj/ = π.Mj;θj/ rji.θj/ q̃nmax−nj .unj+1; : : :; unmax/
π.Mi;θi/ rij.θi/ q̃nmax−ni.uni+1; : : :; unmax/

|Jhi;j.θi; ui;ni+1; : : :; ui;nj /|;
.20/

where q̃d denotes the density of d independent random variables with distribution N.Y; 1− ρ/.
The algorithm therefore proceeds as follows. Suppose that we are currently at modelMi; and

in state .θi;ui/.

(a) Update Y according to any Markov chain dynamic preserving its distribution.
(b) Choose a model to try to move to according to ri·.θi/, j say.
(c) Suppose that nj > ni; then

(i) generate uni+1; : : :; unj according to N.Y; 1− ρ/,
(ii) accept the move to hi;j.θi;ui/ with probability min{1;Ai;j.θi; ui; θj; uj/} given in

equation (20) or
(iii) otherwise remain at .Mi;θi;ui/.

(d) Ifnj < ni, computeh
−1
i;j .θi;ui/, which gives us .θj; uj/. Accept thismovewith probability

min{1;Aj;i.θj;uj; θi;uj/}−1. Otherwise stay at .Mi;θi; ui/.

6.4. Generalizing the auxiliary variable methods
The examples that are provided in this section are based on the assumption that our proposal q
is of (multivariate) normal form. In many cases, this will not be true and so we require the intro-
duction of a more general method for producing dependent sequences with arbitrary stationary
densities. This problem reduces to the case where q denotes a standard .nmax −ni/-dimensional
uniform density, since, given a sequence of standard uniform vectors, u-variates from any ar-
bitrary density may be obtained (via inversion, for example). Thus, without loss of generality,
we shall focus on the standard uniform case here. Given the examples already provided in this
section, it is clear that such a sequence may be obtained simply by taking the inverse normal
cumulative density function of the u-variates described above. However, a simpler method is to
construct a scheme which induces a stationary uniform density directly. One such scheme is the
so-called ‘moody ring’ scheme described below.
Suppose that we need to update nmax parameters of which ni are associated with the current

model and nmax − ni are the AVs. Thus, ui = .uni+1; : : :; unmax/. It is easiest to begin with the
correlated AV method for which we require an updating scheme which induces dependence
between both successive iterations and across (future) components. We also require that the
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process has a stationary marginal distribution which is the standard uniform distribution for
all elements of the u-vector.
Consider a process {Ct} for which we setCt = .Ct−1+wt/mod 1 wherewt ∼ U[−"; "], " � 0:5.

This essentially describes a random walk on [0;1] in which the end points are joined. You might
think of Ct as living on a ring of circumference 1, where the value of Ct is determined by the
distance along the ring (in a clockwise direction) from a fixed point on the circumference. The
stationary distribution for Ct is therefore uniform on [0; 1]. We call Ct the mood parameter,
since its value will typically favour one particular move (such as one which increases the dimen-
sion—see Section 9) over any other at any particular time. Given the mood parameter Ct , we
can generate the elements of uti (given by u

t
l , l = 1; nmax − ni) by setting utl = .Ct + ztl/mod 1

where ztl ∼ U[−δ; δ], δ � 0:5; l = 1; : : :; nmax − ni.
The fact that all the ul are generated from the same distribution induces a dependence between

them which increases as δ → 0. Thus, for small δ, whatever ‘mood’ the Ct-chain is in, the utl-
chains will all be in a similar mood. In addition, the mood parameter moves around the ring,
inducing a dependence across iterations, the strength of which depends on the value of ". If both
δ and " are small, then moods (values) will be consistent across the ui-vector and mood changes
will be slow across time. This means that we induce prolonged periods in which, for example,
dimension-changing moves are easy to perform, and thus allows greater opportunity for chains
to move between models of appreciable probability mass separated by more than one reversible
jump move in which intermediate models are not well supported. An example illustrating this
behaviour is provided in Section 9.
For the uncorrelated case, we simply remove the mood parameter and update the utl indepen-

dently of one another, so that utl = .ut−1l + ztl/mod 1 so that each u
t
l follows its own random walk

around the ring over time. If we set " = δ = 0:5 we obtain the vanilla reversible jump MCMC
algorithm.

7. Comparing the methods

In this and the following sections, we illustrate our methodology with the aid of three examples
which have been chosen to provide a representative sample from the range of problems to which
the reversible jump MCMC technique has been regularly applied. However, before we do so,
we begin by discussing a variety of methods which can be used to assess the performance of the
sampler so that the various algorithms may be compared.
The performance assessment techniques can be split into two categories: the numerical and

the graphical. Graphical techniques include raw trace plots, autocorrelation plots and cumu-
lative plots. Since these are to be plotted over all iterations, we must first find statistics to plot
which retain a constant interpretation across all models. In most cases, the model number may
be plotted. For example in the autoregressive case themodel number is simply the autoregressive
order, in the mixtures case it would be the number of components and in the graphical models
case it may be the number of edges or some lexicographic representation of the current graph.
An alternative is to plot the deviance over time as that also retains a constant interpretation.
Examples of cumulative plots include the cumulative number of models visited within a simu-
lation, and the cumulative occupancy fractions (see Richardson and Green (1997), Brooks and
Giudici (2000) and Brooks et al. (2002)).
Numerical assessment techniques include monitoring acceptance rates for model-changing

moves, noting the total number of models visited, effective sample size (ESS) calculations and
convergence rate estimates. Acceptance rates for reversible jump MCMC moves are typically
somewhat lower than those for fixed dimension Metropolis–Hastings moves, for example.
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Though a high acceptance rate does not necessarily guarantee good sampler performance
(Gelman et al., 1996) an increase in the acceptance rate while retaining the same posterior
inference would usually be viewed as an improvement. ESS calculations can be obtained for
statistics that retain a coherent interpretation throughout the simulation. These tell us how
many independent observations are equivalent (in terms of learning about specific statistics of
interest) to the set of dependent observations actually obtained. Thus, the larger the ESS is, the
better the performance of the algorithm; see for example Hastings (1970). Perhaps most useful
are comparisons of ESS per second (Sargent et al., 2000) which also incorporate computational
expense for a more practical comparison. The simplest comparison of this form can be made
by recording the model order variable throughout the simulation and comparing the ESS (in
terms of the mean of this variable) across the various simulations. Simulations which mix better
in terms of movement between models will have smaller autocorrelation times and therefore
larger ESSs. See Brooks and Giudici (2000), for example. Finally, convergence rate estimation
(in terms of the marginal distribution over the model space) may be obtained by examining
the marginal distribution of the model number (or any other scalar statistic with constant
interpretation, such as the number of edges) and deriving an empirical transition matrix for this
sub-Markov chain. The second largest eigenvalue of this matrix provides an indication of the
convergence rate; see Brooks et al. (2002).
None of the methods described above provide a reliable comparison in themselves, but to-

gether they provide sufficient information to begin to make some general statements comparing
two or more samplers. We hope that in computing a variety of performance statistics we can
draw fairly broad conclusions about the relative merits of competing algorithms. Obviously
there is considerable scope for future work in this area.

7.1. Example: autoregressive model choice
Throughout the preceding sections, we have illustrated our methods with reference to the an-
alysis of autoregressive time series. We begin our discussion, comparing the various methods,
by examining their performance in the context of this example.
We consider an analysis of the data described and modelled by Huerta andWest (1999). This

series consists of 540 monthly observations of the southern oscillation index during 1950–1995,
measuring the ‘difference of the departure from the long-termmonthlymean sea-level pressures’
at Tahiti in the South Pacific and Darwin in Northern Australia. For each method we take an
N.0; 1/ prior for the autoregressive parameters, a Γ−1.10−3; 10−3/ prior for the error variance
and a uniform prior on values of k from 1 to 10. These priors are chosen to be reasonably vague
and to provide an acceptable compromise in terms of their influence on the model parameters
and the models themselves. See Jennison (1997) and Berger (2000), for example.
For each method, we run three independent replications of 1 million iterations, thinning to

every 10th value to reduce computational overheads associated with storage. In all simulations,
the within-model parameter estimates were essentially identical and each simulation gave iden-
tical orderings of the models in terms of posterior model probabilities, though there was some
variation in the actual posterior probability values obtained. Estimates of the Monte Carlo
standard error of the posterior probability for the most likely model (a posteriori) are around
0.003 for all simulation algorithms. All methods attributed the highest posterior probability to
the AR(3) model with significant posterior mass placed also on AR(2) and steadily decreasing
probability assigned to higher order models, as we would expect (Ehlers and Brooks, 2002).
For illustration, we ran the vanilla algorithm with a pilot-tuned proposal distribution for

model moves fixed to be a normal distribution with mean 0 and variance 0.01. These values
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were obtained by using the standard practice of running a variety of simulations with different
values and choosing the set which gives the highest acceptance rates. For comparison, we also
ran the zeroth-order, first-order, second-order and conditional maximizationmethods together
with a series of AV methods. We begin with the vanilla uncorrelated AV method (i.e. the corre-
lated AV method with no kth-order methodology), taking a range of λ-values. We then fixed λ
to be 0.5 and took a combination of the uncorrelated AV method with the zeroth-order, first-
order, second-order and conditional maximization methods. Finally, we ran a similar range
of simulations for the correlated AV method. The results of these simulations are presented in
Table 1.
We can see from Table 1 that all methods visit at least models 2–6. Although there is some

variability between the value of the highest posterior model probability, this is well within the
range expected given the (fairly low)MonteCarlo standard errorswhich are, aswewould expect,
larger for those algorithms performing least well.
In terms of the acceptance rate, the first-order, second-order and conditional maximization

methods appear to performwell, with a twofold improvement over the vanillamethod. Similarly,
the ESSs demonstrate a threefold improvement over the vanilla algorithm and the estimated
convergence rate an approximately twofold increase in performance. This improvement appears
to be at the expense of a modest 10% increase in computation.

Table 1. Summary statistics for the autoregressive example: acceptance rate Nα, range of
models visited, posterior probability of the ‘true’ model, ESS (from a thinned sample of size
100000), computation time and estimated convergence rate (for the thinned sample) r̂†

Method ᾱ Models π(M3)‡ ESS Time (s) r̂

Vanilla 0.091 1–8 0.610 3878 412 0.776
Zeroth order 0.051 1–6 0.611 4887 440 0.848
First order 0.203 2–8 0.610 10668 492 0.539
Second order 0.206 2–9 0.609 10850 464 0.545
CM 0.205 1–8 0.612 10268 444 0.573

λ = 0:2 0.093 1–8 0.612 3773 402 0.808
λ = 0:5 0.092 1–9 0.606 3571 399 0.889

UAV λ = 0:7 0.091 1–8 0.610 3515 403 0.909
λ = 0:9 0.091 1–7 0.614 2948 402 0.950
λ = 0:95 0.091 1–7 0.610 2197 401 0.969

UAV (0) λ = 0:5 0.051 1–5 0.616 4671 441 0.844
UAV (1) λ = 0:5 0.204 2–8 0.615 9661 488 0.557
UAV (2) λ = 0:5 0.206 2–8 0.616 10542 464 0.562
UAV (CM) λ = 0:5 0.205 1–10 0.613 10137 450 0.588

λ = 0:2 0.088 1–8 0.612 3471 406 0.778
λ = 0:5 0.075 1–7 0.606 3359 408 0.852

CAV λ = 0:7 0.062 2–7 0.614 2857 404 0.906
λ = 0:9 0.040 2–7 0.609 1510 410 0.928
λ = 0:95 0.030 2–7 0.607 1020 402 0.938

CAV (0) ρ = 0:5 0.050 2–7 0.609 4634 468 0.875
CAV (1) ρ = 0:5 0.165 2–7 0.606 9709 500 0.584
CAV (2) ρ = 0:5 0.183 2–8 0.613 10525 481 0.596
CAV (CM) ρ = 0:5 0.178 1–8 0.607 9729 462 0.613

†The performance is averaged over three replications of the different methods for the thinned
chains. UAV, uncorrelated AV; CAV, correlated AV; CM, conditional maximization.
‡π.M3/ denotes the estimated posterior probability associated with modelM3.Monte Carlo stan-
dard errors for these were also calculated from multiple replications of each algorithm and were
between 0.002 and 0.004 for all simulations.
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Turning to the uncorrelated AV method, we can see that increasing λ for the vanilla method
results in a decreasing convergence rate and ESS, as we would expect, and that the acceptance
rate appears to change very little. It is worth noting here that this is a particularly simple exam-
ple. There is no multimodality in the model space and so the addition of the AVs would not be
expected to improve on the vanilla algorithm, which itself performs very well on this example.
When we fix the dependence of the uncorrelated AV method and consider combining it with

the kth-order methods, we observe a pattern similar to those without AVs. The first-order, sec-
ond-order and conditional maximization methods appear to perform well and clearly better
than the pilot-tuned vanilla algorithm. Similarly, when we examine the correlated AV method,
we observe a similar performance to the uncorrelated AV method, though the improvement of
the higher order methods over the vanilla method is lessened.
These results demonstrate that higher order methods appear to work at least as well as (if not

better than) the pilot-tuned vanilla algorithm in this simple example. They therefore represent
a considerable improvement over the vanilla algorithm since a comparable performance is ob-
tained without the need for an expensive pilot tuning process. There appears to be no detectable
additional benefit to the introduction of AV methods in this case. In the next two sections, we
consider two further (and more challenging) problems and show how the kth-order and AV
methods can make dramatic improvements in performance over pilot-tuned vanilla methods.

8. Graphical Gaussian models

Let X be a k-dimensional vector of random variables. A conditional independence graph g =
.V ;E/ describes the association structure of X by means of a graph, specified by the vertex set
V and the edge set E. A graphical model is a family of probability distributions Pg which is
Markov over g (see, for instance, Lauritzen (1996)). A graphical Gaussian model is obtained
when only continuous random variables are considered and assuming Pg = N.µ;Σg/, with Σg

positive definite and such that Pg is Markov over g.
Recently, Giudici and Green (1999) proposed a hierarchical class of prior distributions and

a reversible jumpMCMCmethod, to perform both model selection and inference on the quan-
tities of interest. At each stage, moves are performed, by adding or deleting one edge from the
current conditional independence graph of the model, g, and checking that the resulting new
graph g′ is decomposable. When a new edge, say .i; j/, is proposed for insertion, the dimen-
sionality of the parameter space increases by 1; this implies the presence of an extra free element
inΣg, σ′

ij. A realization of the new parameter element is sampled by drawing a random variable
v from an N.0;σ2g/ distribution and setting σ′

ij = v. This proposal does not take into account
the previous (constrained) state of σij.
One difficulty with this approach is the choice of the spread parameter σ2g of the proposal

distribution. In Giudici and Green (1999) the constant was fixed, on the basis of several pilot
runs, to be equal to 0:5n=|V |, where n is the sample size and |V | the cardinality of the vertex set
V . Our aim here is to construct efficient reversible jump rules for the varying-dimension move,
according to the recipes specified in the previous sections.
First, we note that the dimension matching constraint is specified by a 1–1 function between

Θ = {σlk : .l; k/ ∈ Eg} and Ψ = {.σlk : .l; k/ ∈ Eg/ ∩ .σij : .i; j/ �∈ Eg ∩ .i; j/ ∈ Eg′/}.
Therefore, the zeroth-order proposal leads us to set the proposal parameter to be given by

σ−1
g = √

.2π/
h.ΣS/h.Σ′

Sij; u = 0/

h.ΣSi/ h.ΣSj/
;

using the weak non-identifiability centring point for which σij = 0.
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The graphical Gaussian model example is highly complex and a very large family of pos-
sible models lies within the support of the posterior distribution. This makes pilot tuning of
algorithm parameters particularly problematic. However, the zeroth-order method provides an
automatic way of adaptively tuning the proposals, greatly reducing the time that is required to
obtain reliable results. The large cardinality and potential multimodality of the model space
suggests that, for graphical models, an AV scheme, such as those illustrated in Section 6, may
improve the convergence.
The total number of AVs here is equal to the maximum number of edges possible, i.e. the

number of edges in the complete graph, which we denote by nmax = n.n− 1/=2. To implement
the saturated space approach, we assume that we have a vector of AVs, u1; : : :; unmax , that we
assume is distributed as multivariate Gaussian, with zeromean and variance–covariancematrix
equal to an intraclass correlation structure

Φ = τ{ρJ + .1− ρ/I}; .21/

where J is the p× p matrix of 1s and I the identity matrix of order p. We take τ = 1.
In theMCMC implementationwe sample each ui from a proposal distribution corresponding

to the full conditionals derived from the previous stationary distribution of the us. It is easy
to derive the fact that the full conditionals are Gaussian with mean equal to .ρΣj �=i uj/={1 +
.nmax − 2/ρ} and variance equal to .1− ρ/{1+ .nmax − 1/ρ}={1+ .nmax − 2/ρ}.

8.1. Results
We first compare the mixing performance of our proposed zeroth-order algorithm with the
vanilla (pilot-tuned) reversible jump scheme, as developed in Giudici and Green (1999). The
comparisons will be made by using both graphical and more formal model convergence di-
agnostics. We remark that, for computational storage purposes, all graphical output has been
thinned, retaining only one in every 10 observations. First we briefly consider, for illustration,
one of the simplest, and most analysed, graphical modelling data sets: Fret’s data, described in
Whittaker (1990), concerning head measurements on pairs of sons in a sample of 25 families. In
this example, since k = 4, the number of possible graphs is equal to 64, including three which
are not decomposable.
We run two simulations each of length n= 100000, starting from the same point, for the

vanilla and the zeroth-order methods. In reporting the results from MCMC model selection,
we represent a graph by means of a vector of binary variables, indicating whether each edge is
present (1) or absent (0), and with edges in a graph being ordered lexicographically. Fret’s data
contain at most six edges. The two graphs with the highest posterior probability are, with the
vanilla method, (110111), with probability 0:13497, and .111011/, with probability 0:12804. In
other words, the two best graphs differ by the position of the chord that breaks the four-cycle.
The zeroth-order method gives the same two best graphs: (110111) (0.12704) and (111011)
(0.11728). However, the posterior probabilities are slightly lower in the zeroth-order case, sug-
gesting that the Markov chain has spent more time in the tails of the distribution. In fact, on
closer inspection, the vanilla algorithm visits only 23 distinct models compared with the zeroth-
order method which sees a total of 29. This provides further evidence of the superiority of the
zeroth-order method on this example.
We now consider the analysis of the fowl bones data set (Whittaker, 1990) concerning mea-

surements on chicken bones. As there are six vertices, the number of possible graphs is 32768.
The total number of decomposable graphs is about 80% of these and so the resulting reversible
jump MCMC simulation runs on a graph space with about 26300 candidate models. Thus,
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the model space is considerably larger than that for Fret’s data. We investigate the zeroth-
order method together with a correlated AVmethod in comparison with the usual (pilot-tuned)
vanilla method.
An interesting problem here is that for one of the 15 edges the weak non-identifiability cen-

tring turns out to be inappropriate, precisely because the presence of the edge in question within
the model is very strongly supported by the data. Thus, improvements on all the methods are
possible by problem-specific centring strategies. Using the zeroth-order method for instance,
the fact that the centring point is very much in the tail of the proposed model space leads to
an extremely large variance for the proposed move. This is inappropriate in this example since
what is being proposed is the introduction of a (non-null) partial correlation. Therefore, rather
than refining the centring point (which would be a very problem-specific fix), we have imposed
a truncation of the proposal variance to preclude the proposal of a large majority of impossible
values for the partial correlation.
The first part of Table 2 demonstrates the substantial improvement in performance of the

zeroth-order method over the vanilla method with a simulation run length of 1 million thinned
to every 10th. The correlated AV method was implemented with ρ = 0:5 and, as we can see
from Table 2, performed at least as well as the zeroth-order method.
Fig. 2 provides a trace plot of the number of edges, which can be taken as a measure of model

complexity. The difference in performance between the vanilla and our methods is illustrated
by the more rapid transitions between edge counts.
Fig. 3 compares more closely the behaviour of the posterior probabilities of the models. The

plots give the cumulative number of different models visited by the Markov chain for the three
algorithms. They demonstrate that the vanilla method has clearly failed to converge since it
has visited not much more than half the number of models visited by the zeroth-order method
or the correlated AV method. The correlated AV method visits many more models than the
zeroth-order method also.
Looking more closely at the model posterior distributions, we found that all the methods

find the two highest probability models in the same order (and appear to visit broadly the same
class of popular models when we examine the ordered list of popular models in more detail).
However, the second part of Table 2 shows that the zeroth-order and the AV method lead to a
much more stable estimation of the posterior distribution.
In particular, the posterior probability variances and the distance measures presented in

Table 2 are calculated on the basis of a multiple run of 10 chains with 1 million iterations,
each started at a random point. The distance measure is obtained by considering, for
each chain, the five most likely models and calculating, for each pair of chains, the num-
ber of matches. The final score for each method is obtained by summing the number of

Table 2. Fowl bones data: summary statistics (acceptance rate Nα and ESS), model probability esti-
mates (including the Monte Carlo variance) for the two models with greatest posterior mass and number
of model matches between chains for thinned simulation output using different proposal determination
methods

Method ᾱ ESS π(M30504) var{π(M30504)} π(M29992) var{π(M29992)} Distance

Vanilla 0.001 91 0.17 0.10 0.001491 0.000268 0.747
Zeroth 0.015 874 0.18 0.11 0.000061 0.000062 0.449
CAV 0.026 1403 0.16 0.09 0.000174 0.000145 0.604
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Fig. 2. Fowl bones data: diagnostic plots on the number of edges present for (a) the pilot-tuned vanilla
algorithm, (b) the basic zeroth-order method and (c) the correlated AV method

matches over all pairs and normalizing by dividing it by the maximum possible number of
matches.
To summarize our conclusions, the investigation of multiple long runs suggests reasonable

stability in estimates from the zeroth-order and correlated AVmethod, and both of these appear
to perform considerably better than the vanilla method.

9. Mixture models

Asour final example,we re-examine the classification problem thatwas discussed byRichardson
and Green (1997) and look at modelling a series of univariate data as a finite mixture of Gauss-
ian distributions. This example presents peculiar difficulties. For instance, the model-changing
moves generally involve moving between spaces differing by more than one dimension. Thus,
we typically have more degrees of freedom in our proposal distribution for moving from one
model to the next. Furthermore, the parameter spaces may be bounded both above and below
if we impose (as is common) an ordering constraint on the component parameters. As a con-
sequence, we are somewhat limited by analytic tractability in terms of the use of the kth-order
methods. However, the AV methods remain very easy to use.
For an introduction to mixture modelling, we refer the reader to Richardson and Green

(1997), who introduced a reversible jump MCMC scheme for a normal mixtures problem. De-
noting the jth component by πj with associated parameters µj and σ2j , the k-component normal



32 S. P. Brooks, P. Giudici and G. O. Roberts

Fig. 3. Fowl bones data: cumulative number of models visited during simulation for the vanilla ( ),
zeroth-order ( . . . . . . .) and CAV (-- - - - - -) methods: the total numbers of models visited by these methods
are 116, 209 and 245 respectively

mixture model is given by

f.x/ =
k∑

j=1
wj πj.x/:

Moves between models are performed via two reversible jump schemes known as split–combine
and birth–death moves. We shall briefly consider the split–combine move here.
There are various ways in which the split–combine move may be implemented; however,

Richardson and Green (1997) suggested the following. For the move which splits a single com-
ponent .j/ into two (j1 and j2), we adopt a moment matching strategy in which the weight that
is assigned to that component is split between the two new components. Similarly, we assign
means and variances to the new components which preserve the first- and second-order
moments. This can be done by generating three random variables v1, v2 and v3 from any density
defined on [0;1] and setting

wj1 = wjv1;

wj2 = wj.1− v1/;

µj1 = µj − v2σj

√(
wj2

wj1

)
;

µj2 = µj + v2σj

√(
wj1

wj2

)
;

σ2j1 = v3.1− v22/σ
2
j

wj

wj1

;
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σ2j2 = .1− v3/.1− v22/σ
2
j

wj

wj2

:

Richardson and Green (1997) suggested generating the vi from independent beta distributions
and took

v1 ∼ Be.2; 2/;

v2 ∼ Be.2; 2/;

v3 ∼ Be.1; 1/:

Let us begin by identifying the centring point for the move. Clearly, the weak non-identifi-
ability centring point is obtained when the means and variances of the two new components are
identical (and therefore the same as for the original component). This corresponds to v2 = 0
and v1 = v3. Thus, the centring point is given by .v1; v2; v3/ = .0:5; 0; 0:5/, say. The interesting
thing to note here is that the proposals taken by Richardson and Green (1997) for v1 and v3
have modes at the corresponding centre points, but this is not so for v2. If we transform the
proposal for v2 so that v2 = |2v′ − 1|, with v′ ∼ Be.2; 2/, so that the mode is now at zero, then
the acceptance rate for the split–combine moves increases from 8% (for the enzyme data set) to
10%, so we immediately appear to observe a small improvement just by thinking more carefully
about the proposals.Note that the acceptance ratioA as defined inRichardson andGreen (1997)
is undefined if v2 = 0, since v2 appears explicitly in the denominator of the acceptance ratio.
Although this does not affect the implementation of Richardson and Green’s algorithm in its
basic form, our kth-order methods may not be directly applied at the weak non-identifiability
centring point. However, trivial manipulations allow us to rewrite the acceptance ratio in a form
in which the v2-term in the denominator cancels with a similar term in the numerator and so
the kth-order methods may be applied. The obvious kth-order approach is to try to generate
vi ∼ β.αi;βi/ and to use perhaps the zeroth- to fifth-order equations to determine sensible
values for these six parameters. A simpler alternative is to set αi = βi = R and to use just a
single constraint to obtain R.
As a simple illustration suppose that we generate ui ∼ U.0; 1/ for i = 1; 3 and set v.u/ =

[ 12 + .1 − 2u1/R;2Ru2; 12 + .1 − 2u3/R]. The centring point is obviously b = .0:5; 0; 0:5/, the
proposal density q.u|R/ = 1 and the Jacobian term |Jh| = .2R/3. Now, if we let g denote all
the terms in the acceptance ratio in equation (6) except the proposal term, i.e.

g.θi;u/ = π.Mj;θj/ rji.θj/

π.Mi;θi/ rij.θi/
|Jh.θi; u/|

where θj = hij.θi;u/, then the zeroth-order method gives the solution R = g.θi; b/1=3=8. Com-
pare this with equation (11), for example.
Using the zeroth-ordermethod to determine the value ofR for the enzymedata set ofRichard-

son andGreen (1997) and adopting their priors, the acceptance rate decreases the split–combine
acceptance rate to 2.5% from the 8% acceptance rate that they observed. This does not improve
over the results ofRichardsonandGreen (1997), but this performancehas been achievedwithout
the need for pilot tuning of any kind.
TheAVmethods perform considerably better for this problem.However, sincemanymethods

perform adequately for the enzyme data problem, we shall artificially constrain the number of
models, k � 5 (thus constraining to just over 80% of the posterior mass from the unconstrained
problem), to see this advantage more clearly. The constraint has a serious effect on the mixing
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of the vanilla algorithm since movement between parsimonious models that is well supported
by the data cannot now be realized by transition through more complex models.
To examine the performance of the various methods, we ran each simulation for 200000 iter-

ations, discarding the initial 100000 as part of the burn-in, and compared the vanilla algorithm,
proposed by Richardson and Green (1997) on the basis of initial pilot tuning, with the uncorre-
lated AV and correlated AV algorithms using the moody ring method described in Section 6.4.
Each algorithm was run with the same randomly chosen starting-points and pseudorandom
seeds. We take " = 0:1 and δ = 0:05 and, though the output exhibits some sensitivity to the
choice of these values, almost any values appear to provide an improvement over the vanilla
method. Trace plots of the number of components are provided in Fig. 4 and these are typical
of those observed for independent replications of the chains with different starting-points and
seeds.
From Fig. 4 it is clear that the autocorrelated methods performed significantly better than

the vanilla algorithm, which performs poorly. The AV methods are largely unaffected by the
restriction on the model space (although they also suffer from the constraint to some extent).
For example, the two-componentmodel is visited only rarely by the vanilla algorithm (especially
in the second half of the simulation) but much more regularly by the others. The corresponding
acceptance rates for between-model moves are 4.3%, 17.7% and 5.3% for the vanilla, uncor-
related AV and correlated AV methods respectively. The slight ‘blockiness’ that is apparent in

Fig. 4. Trace plots of the number of components for (a) the vanilla, (b) the uncorrelated and (c) the corre-
lated AV methods for the mixtures example using the enzyme data set, considering only models with five
components or fewer
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the trace plot for the correlated AV method is due to the introduction of the central point. At
certain positions on the ring, moves which increase the dimension are preferred, whereas, at
other positions, moves which decrease the dimension are preferred. This leads to the slightly
more ‘blocky’ trace plot in Fig. 4 and is an extremely useful property to have in the presence of
extreme multimodality. The short-term persistence of particular move types in the correlated
AV method allows the chain to explore further into the tails and provides greater potential for
jumping between modes.
For this example, sensible monitoring procedures ought to pick up mixing problems in the

vanilla algorithm, and it is clear how to improve mixing by increasing the permissible values
of k. However, in general, it is difficult to determine how the range of models to be considered
will affect the mixing properties of the corresponding algorithm. Indeed, in some cases, the
range of models may be constrained to a small set by factors relating to the problem at hand.
Thus, it is extremely difficult to predict whether or not the range of models allowed is sufficient
to enable the vanilla algorithm to mix. Worse still, though for this problem the detection of
inadequate mixing is easy, in general this will be far from obvious. This example illustrates that
the AVmethods are less likely to be affected by model space constraints. In fact, in the presence
of extreme multimodality, the AV methods may perform significantly better than the vanilla
method whatever the range of models considered.

10. Concluding remarks

We have introduced a collection of techniques for reversible jump proposal choice, firstly in the
traditional setting as introduced by Green (1995) and secondly in the more flexible saturated
space setting. It was shown that several techniques used to construct proposals in Euclidean
spaces (e.g. Langevin-diffusion-motivated methods and Hamiltonian AV techniques) can be
extended to our setting in this paper.
The results have been applied to varied Bayesian examples, autoregressivemodel choice, finite

mixtures and Gaussian graphical model choice. The results show that the new techniques can
produce considerable improvements over (even heavily pilot-tuned) standard methods in many
cases. However, the results are far from being uniformly positive towards the use of our tech-
niques, and an important question raised by our investigation asks in what classes of problems
are our methods most successful. The relative performance of our methods in comparison with
vanilla techniques seems to be best in more complex problems with large numbers of models
and model spaces which are highly non-linear. Thus, the zeroth-order method performs con-
siderably better than the vanilla method in the graphical model examples, whereas the auto-
regressivemodel choice examplemixes adequatelyusingvanillamethodology, soonlyamarginal
improvement in performance is observed with some of our methods. However, the AV meth-
ods that we introduced generally outperform vanilla methods in all the examples that we have
considered.
As with Langevin algorithms, the methods proposed here could suffer from problems where

the proposed variance values are totally inappropriate (as for example in the fowl bones exam-
ple of Section 8). This could be caused by unrepresentative centring points, or indeed by target
densities withinmodels not being sufficiently smooth. For this reason, it will be sensible inmany
applications to adopt a truncation on the algorithm scaling parameters.
The approaches introduced in this paper have been largely introduced in the special case

where moves to smaller dimensional models are deterministic. As we show in Section 5 (see also
the examples in Ehlers and Brooks (2002) and Brooks et al. (2003)), there is no need for this
restriction. The full generality of these approaches remains to be explored.
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Additionally, within the saturated space approach, natural classes of proposals can be con-
structed by composing within-model candidates with deterministic between-model moves. The
usefulness of this idea remains to be explored.
It is also clear that further work on the choice of centring points is necessary. This issue is

only briefly touched on in this paper, where the weak non-identifiability and conditional maxi-
mization methods are described. Apart from the promising ideas introduced in Green (2002)
and Ntzoufras et al. (2002), this is a highly undeveloped and important area.
One subsidiary point that comes out of the examples studied is the issue of convergence diag-

nostics for reversible jumpalgorithms in general. It seems that the problems that are encountered
with such diagnostics in Euclidean state spaces are exacerbated in the context of reversible jump
algorithms onmore complex spaces. These issues are investigated further in Brooks et al. (2002),
for example.
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Appendix A: State-dependent proposal density—an equivalent but alternative set-up

The notation set-up introduced in Section 2.1 and summarized in Fig. 1 can be described alternatively
as follows. This is an alternative (and essentially equivalent) formulation of equation (5) which merely
modifies the random seed jump distribution directly. Suppose that we are initially given a collection of
random seeds drawn from a distribution function Fq. Let

vi;j;θi .U1; : : :; Unj−ni / = .F−1
1;i;j;θi {Fq.U1/} ; : : :; F−1

nj−ni;i;j;θi{Fq.Unj−ni /}/; .22/

where Fl;i;j;θi is the distribution function of a one-dimensional distribution, which can depend on θi,
1 � l � nj − ni. Let U1; : : :; Unj−ni be a collection of state-independent random seeds drawn from
distribution function Fq. If U is drawn from qnj−ni , then vi;j;θi .U/ consists of independent components
.V1; : : :; Vnj−ni / with Vl having distribution function Fl;i;j;θi . In other words the algorithm now merely
inputs differently distributed random variables into the canonical jump function. To apply equation (6)
we need to evaluate the Jacobian term and, as discussed in Section 3, it is easily verified that

|Jh
ij.θi; u/| = |Jf

ij {θi; vi;j;θi .u/} | ×
∣∣∣∣@vi;j;θi .u/@u

∣∣∣∣ : .23/

The first term on the right-hand side of equation (23) is exactly that used in ordinary reversible jumps
using the canonical jump functions {fi;j}. Investigating the second term by using equation (22) we obtain∣∣∣∣@vi;j;θi .u/@u

∣∣∣∣ =
(

nj−ni∏
l=1

fi;j;θi [F
−1
l;i;j;θi {Fq.Ul/}]

)−1
nj−ni∏
l=1

fq.uq/
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where fi;j;θi denotes the density corresponding to the distribution function Fl;i;j;θi . Thus, in this context
we can rewrite equation (6) as

Ai;j.θi;θj/ = π.Mj;θj/ rji.θj/

π.Mi;θi/ rij.θi/
nj−ni∏
l=1

fi;j;θi .v/
|Jf

ij .θi; v/|;

where v is initially drawn from the distribution with independent components with respective distribution
functions Fl;i;j;θi , and θj is constructed from equations (5) and (22).

A.1. Example: triangular proposals
Consider triangular densities, satisfying

ϕ.v/ = R−1 + γv; v ∈ [a; b] .24/

with centring point v = 0, a � 0 and b � 0. Clearly, at the centring point (corresponding to u = 0), the
proposal density in equation (24) is independent of the value of γ. Thus, the value of R can be obtained
from the zeroth-order formula (8) which will hold for all values of γ. The value of γ can then be chosen to
satisfy the first-order formula (16), given this value of R. It is easy to show that

γ = 1
R

∇.log[πj{Mj; fi;j;θi .v/}] |Jf
ij .θi; v/|/|v=0

satisfies equation (16). We choose a and b so that the interval [a; b] contains the centring point, i.e.
a � 0 � b. If 2|γ|R2 � 1, then we choose one of a and b to be a location at which the proposal
density becomes 0 and the other end point is chosen to ensure unit probability mass. If 2|γ|R2 � 1 this
would leave the centring point outside the interval [a; b]. A sensible alternative is to fix the centring point
to be at the midpoint of [a; b], although other approaches are possible.

Appendix B: Proof of lemma 1

Consider an arbitrary set A such that e ∈ A, and π.A/ = a. Then, since e ∈ A, the only way to move to
a point in Ac is to move from model M1 to model M2. Therefore, the formula for κ.A/ in equation (17)
reduces to

κ.A/ = p

a
P.e;Ac/ = p

a

∫
Ac

min
{
1;
1− p

p

f.y/

q.y/

}
q.y/dy

= p

a
Ef

[
min

{
q.Y/

f.Y/
;
1− p

p

}
1Ac .Y/

]
= p.1− a/

a.1− p/
Ef |Ac

[
min

{
q.Y/

f.Y/
;
1− p

p

}]
; .25/

where f |Ac is just the density proportional to f restricted to Ac so that f |Ac.y/ equals .1 − p/ f.y/=.1
− a/ for ∀y ∈ Ac and 0 otherwise. (The normalization constant here is derived from the fact that π.A/ =
p+ .1− p/ f.A/, since e ∈ A.)
Let Γ.u/ = {y : q.y/=f.y/ < u}, and λ.u/ = Pf{Γ.U/}. We assume that λ is continuous. A minor mod-

ification of this argument is possible to cover the discontinuous case. Let uÅ be such that λ.uÅ/ = 1− a.
Set Sc = Γ.uÅ/. Then the expectation under f can be split into two distinct components by restricting the
support first to Sc ⊆ Θ2 and S ∩ Θ2 as follows:

Ef

[
min

{
1− p

p
;
q.Y/

f.Y/

}]
= .1− a/ Ef |Sc

[
min

{
1− p

p
;
q.Y/

f.Y/

}]
+ a Ef |S∩Θ2

[
min

{
1− p

p
;
q.Y/

f.Y/

}]
:

Furthermore, min{.1− p/=p; q.Y/=f.Y/} on Sc is less than or equal to its value on S ∩ Θ2. Therefore

Ef |Sc
[
min

{
1− p

p
;
q.Y/

f.Y/

}]
� Ef |S∩Θ2

[
min

{
1− p

p
;
q.Y/

f.Y/

}]

and so

Ef |Sc
[
min

{
1− p

p
;
q.Y/

f.Y/

}]
� Ef

[
min

{
1− p

p
;
q.Y/

f.Y/

}]
: .26/
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Therefore

inf
A:π.A/=a;e∈A

{κ.A/} � p.1− a/

a.1− p/
Ef |Sc

[
min

{
1− p

p
;
q.Y/

f.Y/

}]
by equation .25/

� p.1− a/

a.1− p/
Ef

[
min

{
1− p

p
;
q.Y/

f.Y/

}]
by inequality .26/

� p.1− a/

a.1− p/
min

[
1− p

p
;Ef

{
q.Y/

f.Y/

}]

= p.1− a/

a.1− p/
min

(
1− p

p
; 1
)
;

since Ef{q.Y/=f.Y/} = ∫
q=f f.y/ dy = 1. However, the last term in these series of inequalities is the

value for the capacitance for any set A such that π.A/ = a and e ∈ A in the case where q = f . Hence, for
this case, the capacitance is maximized when q = f .
The argument for the case where e =∈ A is easy since, by reversibility, κ.A/ = π.Ac/ κ.Ac/=π.A/ so

we can consider instead Ac which is covered by the case considered in detail above. The result therefore
follows.
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Discussion on the paper by Brooks, Giudici and Roberts

Christian P. Robert .Centre de Recherche en Economie et Statistique and Université Dauphine, Paris/
This paper aims to develop general strategies for improving jumps between models in reversible jump
Markov chain Monte Carlo (MCMC) algorithms, which is quite an important and timely goal. Indeed,
in practical implementations of the method, we usually find that the choice of proposals is paramount: in
many cases, the ‘natural choice’ leads to a zero acceptance probability and the construction of well-tuned
moves is often quite costly. Given that the reversible jump MCMC method is an essential part of the
Bayesian toolbox, at least in Bayesian exploratory analysis, a debate is needed for more global strategies
on the choice of proposals.
The first appealing feature, at the core of the paper, is that image parameters that give a Metropolis–

Hastings probability of 1 should be identified as pivotal quantities, just like the current value is a pivot
for the random-walkMetropolis–Hastings move. The authors then propose ‘higher order’ methods where
some derivatives of the probability are set to 0, but I find this less appealing, because it considerably adds
to the complexity of the algorithm.
Obviously, the authors mostly focus on scale, rather than location–scale tuning. The choice of the cen-

tring function ci;j.θi/ is not discussed much further in the paper, even for the case of nested models. For
instance, the resolution of

Li.data|θi/ = Lj [data|fi;j{θi; bi;j.θi/}];
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suggested in Section 2.2, is usually intractable. Moreover, by considering only the likelihood, it may pro-
vide values with very small prior probabilities. In addition, the moves between non-nested models are not
necessarily natural. Take for instance a set of generalized linear modelsMij including some distributions
fi and link functions lj such that y|x ∼ fi{y|lj.xTβij/}; the parameter βij depends on the choice of both
fi and lj , and the move from model Mij to model Muv should not be centred at βij . At the very least, we
must have an invariant over the models like some moments of y or the likelihood, but the resolution of
the corresponding equations is likely to be costly. Similarly, weak non-identifiability does not work well
in this non-nested example.
This is an opportunity to stress a general statistical problem with reversible jump methods, which is the

systematic recourse to the same parameters when jumping between nested models (Section 2.1.1). Most
researchers on model choice state that, on the contrary, the interpretation of parameters should change
between models. For instance, when considering an autoregressive AR(p) and an AR.p + 1/ model, the
meaning of a1 is not the same in both models. In this set-up, under stationarity, the correct parameteriza-
tion is either through partial autocorrelations, which are quite unrelated for orders p and p+1, or through
the (inverse) roots λp of the lag polynomial

p∏
i=1

.1− λiB/Xt = "t; .27/

as in Huerta and West (2000), which, again, do not remain similar between models and thus make the
‘natural’ centring

cp;p+1.λp/ = .λp; 0/ .28/

questionable. Under uniform priors for the real and complex roots λj ,

Fig. 5. Graphical representation of the performances of a reversible jump algorithm for the root parameter-
ization of the AR(p) model, based on a simulated data set of 530 points (upper left) with true parameters αi
(�0:1, 0:3, �0:4) and σ D 1: the first histogram gives the posterior distribution of p and the following histo-
grams the distribution of the natural parameters αi , for different values of p, and of σ2; the final graph is a
scatterplot of the complex roots of the lag polynomial and the bottom middle graph shows the evolution of
α1, α2 and α3
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and proposals based on the priors, a standard reversible jump algorithm does not encounter convergence
problems (Fig. 5). None-the-less, if the uniform prior is replaced with a beta-type proposal,

ϕ.λi/ ∝ |λi|β; β > 0;

where β is to be optimized, the centring equation (8) is not defined when equation (28) is used. (This points
out a commonmeasure theoretic difficulty with criteria which depend on the value of a density at a specific
point and suggests a more integrated alternative for the centring equation.)
Another very appealing feature of the paper is to consider in parallel a kind of saturated model, called

the dual space approach, where the parameter to be simulated is of constant dimension nmax by incorpo-
ration of the remaining auxiliary variables, a feature reminiscent of Carlin and Chib (1995) and Godsill
(2001). I find this representation of reversible techniques very natural. At a deeper level, it seems to me
that this could lead to more general (including non-reversible) MCMC algorithms in variable dimension
models, since moves between models are then Gibbs steps.
The idea of using the ui;rs as auxiliary variables is particularly exciting, in that it eliminates the apparent

difficulty of moving between spaces of different dimensions. It also clarifies what happens to the ui;js
when the move is not betweenMi andMj . It, however, presupposes some degree of homogeneity between
models in that the ui;rs remain (almost) the same between moves, i.e. some generic feature in the ui;rs,
like uniformity, and thus a more elaborate construction of the transforms fi;j . This is particularly true for
(dimension-) correlated proposals. For instance, although the correlated auxiliary variable methods are
performing better than the ‘vanilla’ algorithm in the mixture example, it is quite difficult to fathom why
this is so and this seems to indicate that the methods proposed require harder tuning than alluded in the
paper. (The comparison between the three methods in Section 9 is definitely unfair, in that the truncation
on k � 5 seems to invalidate the vanilla algorithm, whereas, in Richardson and Green (1997), mixing was
quite satisfactory. As shown in Fig. 6, using a C program of my own, the truncation of k at k � 5 does not
appear to hamper convergence in such a dramatic way.)
The paper offers a well-thought-out reflection on reversible jump techniques, in particular by rephrasing

the moves in terms of a centre in the arrival space, contains path breaking innovations in designing re-
versible jump proposals and opens new and broad avenues for designing reversible jump algorithms, while

Fig. 6. Histogram and raw data plot of 100000 k produced by Richardson and Green’s (1997) algorithm for
the enzyme data set, under the imposed constraint k � 5
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calling for further research in producing generic proposals. I thus have great pleasure in proposing the vote
of thanks!

Xiao-Li Meng .Harvard University, Cambridge, and University of Chicago/
Initially I was a little puzzled at being invited to discuss this paper, as I could not locate my name anywhere
in it. Then I realized that this perhaps was intentional, for the second discussant is often perceived to be
the ‘bad guy’—an ‘uncited’ discussant tends to be more critical. As a ‘good guy’, one often gets away
with saying ‘The authors are to be congratulated for a very interesting paper. Now look at what I have
done.’ Being a bad guy, however, one actually has to read the paper. I read every word (at least through
the first page), partially in the hope of finding flaws to be labelled ‘rubbish’, a word, as I understood
which was previously used in such a context. Unfortunately for me as the second discussant, but for-
tunately for readers, the only place where I could possibly do so is at the third sentence of the paper.
This sentence, if read literally, suggests that there is a Bayesian model determination problem beyond the
choice of prior and the specification of the likelihood. What could that be? Of course it is unfair to blame
the authors for this common misuse of ‘model determination’, which should be ‘submodel determina-
tion’. But even with this qualification there remains an inconsistency. Few would label inference regarding
a continuous parameter (e.g. a normal mean) a submodel determination problem, even though para-
digmatically it is not different from making inference about, say, the order of an autoregressive model.
Perhaps because of my recent involvement in a joint paper (to be read to the Royal Statistical Society in
December 2002) that largely centres on the meaning of ‘unknown’ in likelihood or Bayesian modelling,
I am a little more sensitive to semantic issues that might have unintended consequences.
Having done my duty as the bad guy, let me return to my normal role as a good guy so that I can

justifiably advertise some of my own work. First, in van Dyk andMeng (2001), we showedmathematically
that the auxiliary variable (AV) and data augmentation (DA) methods are trivially equivalent, although
they were proposed for different purposes. This connection further emphasizes that efficient construction
of AVs, just as with DA, is a matter of art, a fact that is clearly demonstrated by the current paper. More
importantly, the AV and DA literatures have much to share. For example, the saturated space approach
is commonly used with DA for turning irregular problems into regular ones. As another example, condi-
tional augmentation (Meng and van Dyk, 1999) employs the same strategy as conditional maximization,
i.e. both define a class of candidate DA–AV schemes and then optimize according to a specified criterion.
In Meng and Schilling (2002), we investigated some strategies to match densities via warping their geo-

metric shapes. Warp I resembles the zeroth-order approach, as both attempt to match a ‘centre’. Similarly,
both warp II and the first-order method aim to match a measure of ‘spread’. The geometric approach
that we took might also complement the authors’ algebraic extensions to higher orders. Our warp III
strategy symmetrizes any density via group averaging, such as rotation and reflection. As an illustration
of the possibility of a transdimensional warp III, consider moving from an arbitrary density p+.X̃/ on
R1+ to an elliptically symmetric density on R

2. This can easily be done by revolving p+ around the Z-axis
in R3 (with the appropriate Jacobian). Or, statistically, let φ ∼ uniform(0; 2π) be an AV, independent of
X̃, and then let X = σX̃ cos.φ/ and Y = σX̃ sin.φ/, where σ can be determined, for example, by ‘optimal
scaling’. The ‘reversed jump’ is simply X̃ = √

.X2 + Y 2/=σ. My emphasis here is not on the simple polar
transformation but on the fact that probabilitymasses for (elliptically) symmetric densities tend to bemore
evenly distributed, and thus theymight bemore suitable as proposal densities in some problems. Of course,
this is speculative, but my positive experiences with warp III gives me some hope that transdimensional
warping is not science fiction.
To echomy initial ‘complaint’ about the lack of citation, letme endmydiscussionwith a citation ranking

in Science Watch (May–June 2002). Among the top 25 ranks of mathematicians worldwide in terms of
papers published and cited during 1991–2000, statisticians occupied 19 spots! Parts of the list reads like a
‘who’s who?’ for the Markov chain Monte Carlo club, including two of the Society’s Presidents, Adrian
Smith (number 3) and Peter Green (number 13). I certainly hope that this paper will help to increase
Gareth Roberts’s current ranking (16), and, with a little help from the authors, my own ranking would be
moved up as well!
With that thought, it gives me great pleasure to second the vote of thanks for this potentially highly

cited paper!

The vote of thanks was passed by acclamation.

Jesper Møller .Aalborg University/
I enjoyed reading this stimulating paper. Section 1.1 mentions briefly the many modifications, extensions
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and variations of reversible jump methodology, in particular approaches based on point and birth–death
processes. As illustrated below I find this a promising direction of research, where many points need
further development, not least in connection with Bayesian model determination applications.
One example is provided by Stephens (2000); cf. Section 1.1. See also Cappé et al. (2002). Another,

simpler, example concerns a setting similar to that of Section 1.2, with a target density π.θk/ > 0 for
k = 1; : : : ; kmax and θk = .a1; : : : ; ak/ ∈ Rk. As a simple alternative to the Metropolis–Hastings moves in
the paper, consider a birth–death process X = .Xt/t�0 with similar types of move, i.e. a continuous time
Markov chain with

(a) rate β.θk/ b.θk; ak+1/ for a birth θk = .a1; : : : ; ak/ → θk+1 = .a1; : : : ; ak+1/, where β.θk/ > 0 and
b.θk; ·/ is a density function for k = 1; : : : ; kmax − 1, and

(b) rate d.θk+1/ > 0 for a death θk+1 = .a1; : : : ; ak+1/ → θk = .a1; : : : ; ak/.

Then reversibility is ensured by detailed balance,

π.θk/ β.θk/ b.θk; ak+1/ = π.θk+1/ d.θk+1/ for k = 1; : : : ; kmax − 1: .29/

Assuming this, knowing the birth-rate we know the death-rate (and vice versa), but how do we choose
the birth-rate? A computationally simple but naı̈ve strategy is to let β.θk/ b.θk; ·/ depend on k only (in a
Bayesian setting the birth-rate may depend on the data). The opposite strategy is to let d.θk+1/ = dk+1
depend on k only (a similar strategy is often used for point processes; see for example Ripley (1977),
Baddeley and Møller (1989) and Kendall and Møller (2000)). For the particular target density in Section
1.2, if d.θk+1/ ≡ 1, condition (29) implies that, for k = 1; : : : ; kmax − 1,

β.θk/ = exp{c2.θk/2=2 c1.θk/};
b.θk; ·/ ∼ N{c2.θk/=c1.θk/; 1=c1.θk/};

where

c1.θk/ = 1
σ2a

+ 1
σ2"

T∑
t=kmax+1

x2t−.k+1/;

c2.θk/ = 1
σ2"

T∑
t=kmax+1

(
xt −

k∑
τ=1

aτxt−τ

)
xt−.k+1/:

Thus it is straightforward to make simulations. For other types of target densities it may be less straight-
forward.
The construction of a birth–death process above can easily be modified if we do not limit the number of

components k = 1; 2; : : :. For details see http://www.math.auc.dk/∼jm/discussionBrooks-
etal.ps; where how the coupling method in Kendall and Møller (2000) may be modified and applied
to perfect simulation is also discussed. Incidentally, the ideas in Møller and Nicholls (1999) and Brooks
et al. (2002) for making perfect simulated tempering simulations also apply in connection with reversible
jump Markov chain Monte Carlo algorithms.
It is tempting to extend the approach of birth–death processes to general reversible jump processes,

i.e., in the context of model selection problems, continuous time Markov chains which jumps within and
between the spaces .Mi;Θi/; see for example Cappé et al. (2002). One particular problem is to develop
strategies for finding reasonable jump rates. The paper by Brooks, Giudici and Roberts might serve as an
inspiration for developing such strategies.

Jeffrey S. Rosenthal .University of Toronto/
Statistical models of varying dimension are becoming increasingly important for a wide variety
of applications. Successful use of such models, especially in a Bayesian context, requires sophistica-
ted Markov chain Monte Carlo (MCMC) algorithms for exploring transdimensional distributions, and
the authors are to be congratulated for focusing on this topic.
It is desirable where possible to prove theoretical convergence rate bounds on MCMC algorithms (see

for example Rosenthal (1995)), and this poses a particular challenge for transdimensional chains. Inspired
by the current paper, we have analysed in detail the convergence rate and properties of the simple transdi-
mensional chain described in lemma 1 therein. Of particular interest is the case when p ≈ 1

2 ; and q ≈ f .
The chain is then nearly periodic, in that it jumps repeatedly between the two different dimensions at
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each iteration. In that case the law of θk does not rapidly approach stationarity, even though the chain is
exploring the state space well.
A solution is to consider θBk in place of θk, where Bk ∼ binomial(2k; 12 / ≈ k is independent of the

chain itself (so that θBk corresponds to running 2k iterations of a modified chain which half the time
does nothing). In Rosenthal (2002a, b) we prove rapid convergence for this modified chain, with extensive
generalizations to other ‘sampled chains’ of the form

Pµ =∑
n

µ{n}Pn:

We hope that the future brings many more interactions between transdimensional MCMC algorithms on
the one hand and theoretical Markov chain analysis on the other.

C. Jennison and M. A. Hurn .University of Bath/ and F. Al-Awadhi .Kuwait University/
We have tackled the problem of identifying cells in a confocal microscope image by using a marked point
process of elliptical non-overlapping cells as the prior image model. In sampling from the posterior dis-
tribution, new cells are created in ‘birth’ moves and removed in ‘death’ moves; other moves allow cells to
be split or merged. In adding a new cell, six parameter values are generated for its location, orientation,
size and intensity. Even with a carefully chosen proposal distribution, in six-dimensional space acceptance
probabilities can be vanishingly small with tens of thousands of proposals required for each acceptance.
These difficulties are of a different order from those in the authors’ examples and, since successful jumps
are rare, little information is available to ‘tune’ proposal distributions adaptively.
Our solution is to process each jump proposal, creating a more plausible sample from the posterior

distribution before considering acceptance. For simplicity, we discuss only birth and death moves here.
Following the authors’ notation, let π.Mi; θi/ denote the subdensity with respect to Lebesgue measure
on R6i of that part of the posterior distribution with i cells present. If the current image θi contains i
cells a birth move is chosen with probability ri;i+1 and a new cell generated to give state θ′

i+1 from density
qi;i+1.θi; θ′

i+1/. The new cell’s parameters are then updated by k transitions of a Markov chain Monte
Carlo sampler with detailed balance with respect to a density πÅ.Mi+1; θi+1/ on R6.i+1/, leading to the final
proposal θÅi+1. Let P denote the transition kernel for the full sequence of k moves from θ′

i+1 to θÅi+1 so, by
detailed balance,

πÅ.Mi+1; θ′
i+1/ P.θ

′
i+1; θ

Å
i+1/ = πÅ.Mi+1; θÅi+1/ P.θ

Å
i+1; θ

′
i+1/:

In the reverse death move, chosen with probability ri+1;i, a cell is selected for deletion, updated k times
under the sampler for πÅ.Mi+1; θi+1/ and then deleted. The birth move’s acceptance probability is

αi;i+1{.Mi; θi/; .Mi+1; θÅi+1/} = min{1; Ai;i+1.θi; θÅi+1/};
where

Ai;i+1.θi; θÅi+1/ = π.Mi+1; θÅi+1/ri+1;i {1=.i+ 1/} P.θÅi+1; θ
′
i+1/

π.Mi; θi/ri;i+1 qi;i+1.θi; θ′
i+1/ P.θ

′
i+1; θ

Å
i+1/

= π.Mi+1; θÅi+1/ri+1;i {1=.i+ 1/} πÅ.Mi+1; θ′
i+1/

π.Mi; θi/ri;i+1 qi;i+1.θi; θ′
i+1/ πÅ.Mi+1; θÅi+1/

: .30/

Without the k transitions under the sampler for πÅ.Mi+1; θi+1/, we would have

Ai;i+1.θi; θ′
i+1/ = π.Mi+1; θ′

i+1/ri+1;i {1=.i+ 1/}
π.Mi; θi/ri;i+1 qi;i+1.θi; θ′

i+1/
; .31/

in which

π.Mi+1; θ′
i+1/=qi;i+1.θi; θ

′
i+1/ .32/

is likely to be very small when qi;i+1.θi; θ′
i+1/ is not well matched to π.Mi+1; θi+1/. Making k transitions

with detailed balance with respect to π does not help as equation (30) reduces to equation (31) for
πÅ.Mi+1; θi+1/ ∝ π.Mi+1; θi+1/. Improved acceptance rates can be achieved by defining πÅ.Mi+1; θi+1/
as a distribution intermediate between qi;i+1.θi; θi+1/ and π.Mi+1; θi+1/, so the one very small term (32) is
replaced by the product of two moderately small terms
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π.Mi+1; θÅi+1/=π
Å.Mi+1; θÅi+1/

and

πÅ.Mi+1; θ′
i+1/=qi;i+1.θi; θ

′
i+1/:

The analysis of a simple normal example in Al-Awadhi et al. (2002) shows that this method can improve
lowacceptance rates dramatically. Success inourobject recognitionproblem is achievedwithπÅ.Mi+1; θi+1/
defined as a modification of the posterior distribution in which the likelihood term is ‘tempered’ by raising
it to a power less than 1.

Peter McCullagh .University of Chicago/
Most models that I encounter in applications are linear, such as factorial models, or generalized linear,
such as log-linear models for contingency tables. It is invariably the case that the set of models under con-
sideration constitutes a lattice of subspaces or subrepresentations, closed under intersection and vector
spans.
This paper seems to deal with models as unrelated vector spaces making no explicit use of any embed-

dings that may exist. But, when we have a lattice of models and submodels, there is a natural insertion
from each subspace into its parents. Further, if the model spaces are regarded as inner product spaces,
there is a natural projection in the reverse direction.
I wonder whether any simplification might follow from such lattice structures.

The following contributions were received in writing after the meeting.

Christophe Andrieu .University of Bristol/ and Arnaud Doucet .University of Cambridge/
We comment on the introduction of auxiliary variables, and in particular their use as a way of learning
about the target distribution. The techniques described are borrowed from automatic control and might
be useful in automating the design of reversible jumpMarkov chainMonte Carlo (RJMCMC) algorithms.
We start with a simple motivating example from Green (2002). In the context described by Green (2002)
it is suggested to use the mean µk and covariance Σk of the target distributions to define efficient jump
transformations. As the mean and covariance are unknown, they are estimated by using some pilot runs.
However, the recursions (here iteration i+ 1)

µk.i+ 1/ = .1− γi+1/ µk.i/+ γi+1 x.i+ 1/;

Mk.i+ 1/ = .1− γi+1/ Mk.i/+ γi+1 x.i+ 1/ x.i+ 1/T

could also be used to estimate the quantities of interest, which are then fed back in the sampler; {γi} is
a decreasing step size sequence and {x.i/} is the output of our ‘MCMC’ algorithm. These equations are
connected to the autoregressive technique advocated by the authors but present clear different ergodic
properties. Our recursion is very close to a method proposed in Haario et al. (2001), and it is a particular
case of a much more general framework.
Assume that the MCMC algorithm depends on a tuning parameter β. In the context of the Metropolis

algorithm, β could be the variance of the proposal distribution.We define a cost function that characterizes
the statistical properties of the chain, of the form

h.β/ =
∫

H.β;w/ νβ.dw/;

for some function H and a probability measure νβ to be defined later.
Assume that the optimal value for β is such that h.β/ = 0. An algorithm to find the solution to this

equation is Robbins–Monro recursion (Robbins andMonro, 1951), a special instance of which is given by

βi+1 = βi + γi+1 H.βi;wi+1/;

wi+1|.θ0;w1; : : : ;wi/ ∼ Pβi .wi; dwi+1/;

where Pβ is a kernel which admits νβ as an invariant distribution. This is a noisy gradient algorithm. In
Green’s example, w = x,
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H.β;w/ =
(

x
xxT

)
− β;

νβ.dw/ = π.dx/:

Adjusting the expected acceptance probability of the sampler, minimizing the autocorrelation time can
be formulated in this way, for various Hs and µθs (Andrieu and Robert, 2001, 2002). For the expected
acceptance probability

h.β/ =
∫
X2

{
1 ∧ π.dy/ qβ.y; dx/

π.dx/ qβ.x; dy/
− αÅ

}
π.dx/ qβ.x; dy/

where αÅ is the target acceptance rate. Here w = .x; y/

H.β;w/ = 1 ∧ π.dy/ qβ.y; dx/
π.dx/ qβ.x; dy/

− αÅ;

and νβ.dw/ = π.dx/ qβ.x; dy/.
In the context of RJMCMC sampling, there are numerous potential applications of this idea such as

parameterizing the jump function fβ or vβ and then optimizing some criterion.
Naturally the chain {x.i/} is no longer Markov, and we might question the ergodicity properties of

such chains. Precise results have been derived in Andrieu andMoulines (2002) that give useful quantitative
bounds on the convergence of ergodic averages calculated from such chains.
Finally, a question of interest is that of improving the mixing properties of the sampler. One can suggest

minimizing the first return time to a given small set C associated with a probability measure λ,

τC = Eλ

{∞∑
i=1

ICc .Xi/

}
;

which does not depend on π.

Petros Dellaportas and Ioulia Papageorgiou .Athens University of Economics and Business/
The authors are to be congratulated formaking advances in an importantmethodological tool forBayesian
model determination.
The power of reversible jump sampling, comparedwith other existingMarkov chainMonteCarlomodel

determination methods, is its ability to search in model space rather than approximating Bayes factors.
Thismodel searching is achieved by employing either local or globalmoves in themodel space (Dellaportas
et al., 2002), but clearly the latter are more difficult since the relationship between the parameters of the
models is less obvious. We would like to contribute in the discussion of Section 2 by pointing out that
there are a series of tricks that may be employed to achieve efficient jumps between models.
Assume that the finite mixtures of normals problem tackled by Richardson and Green (1997) needs to

be extended to the multivariate normal distributions setting. Clearly, the moment matching approach is
not the solution in this case, since an immediate requirement is to propose covariance matrix elements
that preserve the positive definiteness. A solution suggested byDellaportas and Papageorgiou (2002) is the
following. First, within each model, employ the usual parameterization that leads to the usual conjugate
Gibbs algorithm; see, for example, Dellaportas (1998). Second, before applying f , perform a reparameter-
ization θi → φi ∈ Φ and then search for good jumps operating onΦ. In this set-up, the parameterizations
that are appropriate are, of course, those that release the need to impose the positive definiteness restric-
tion on the covariance matrices, and can be viewed as part of f . For more details see Dellaportas and
Papageorgiou (2002).

Ricardo S. Ehlers .Universidade Federal do Paraná/
The results in this paper are of great importance in the practical implementation of reversible jumpMarkov
chain Monte Carlo algorithms and the applied user will certainly benefit from it.
The authors focus on a specific implementation of the reversible jump sampler where new parameters

are generated and existing ones remain fixed. In the context of autoregressive models, the expressions for
the proposal parameters obtained via the second-order method correspond to the posterior condition-
al distribution of ak+1 given a1; : : : ; ak under the higher order model. Thus, the posterior conditional is
chosen as the best proposal distribution for the new parameter. It is worth noting that the same solution
is obtained whatever centring point is chosen since u drops out of the two simultaneous equations to be
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solved. It would be interesting to investigate whether there is a general result for this, i.e. under what
circumstances does the centring point drop out?
These methods may be extended to the case where models are still nested, but reverse moves are no

longer deterministic as some of the existing parameters are changed as part of the jump. For this type of
move, the acceptance ratio needs to be altered to include a proposal density in both the numerator and
the denominator. In the autoregression example, we can propose a move from a model of order k with
coefficients a = .a1; : : : ; ak/ to a model of order k′ with coefficients a′ = .a′

1; : : : ; a
′
k′/ by generating new

values for the whole vector of autoregressive coefficients directly in the k′-dimensional space (keeping the
error variance fixed). In terms of dimension matching, this is equivalent to generating a k′-dimensional
random vector u = .u1; : : : ; u

′
k/ from a proposal distribution q.u/ and then setting the change of variables

as a′ = u and u′ = a, i.e. f.a; u/ = .u; a/ which has unit Jacobian. Extending the kth-order method to this
case by simply taking the derivatives of A with respect to both a and u, the second-order method again
suggests the posterior conditional distributions but this time conditioning on σ2" alone; see Ehlers and
Brooks (2002a).

Elena A. Erosheva and Stephen E. Fienberg .Carnegie Mellon University, Pittsburgh/
We congratulate the authors on their stimulating paper. We hope that they can suggest how to adapt their
approach to a problem with which we have been struggling.
We are interested in what is known as the grade-of-membership model (see Manton et al. (1994) and

Erosheva et al. (2002)). For a random sample of subjects, we observe J dichotomous responses x1; : : : ; xJ .
We assume that there are K basis subpopulations, which are determined by the conditional (positive)
response probabilities, λkj , j = 1; : : : ; J . The subjects are characterized by their degrees of membership
in each of the subpopulations g = .g1; : : : ; gK/, which are non-negative and add to 1. Conditionally
on the subject’s membership scores g, the subject’s response probability for item j is given by a convex
combination

Pr .xj = 1|g/ =∑
k

gkλkj:

We assume that the responses x1; : : : ; xJ are conditionally independent, given the membership scores,
and that the membership scores g have a Dirichlet distribution with parameters α = .α1; : : : ;αK/. By
using a data augmentation procedure, we obtain a posterior distribution of the parameters via a Metrop-
olis–Hastings-within-Gibbs algorithm. The current implementation of the algorithm involves separate
Metropolis–Hastings steps for the hyperparameters, reparameterized as α0 = Σk αk and ξ = α=α0, and a
Gibbs sampler for the structural parameters, λ = {λkj : k = 1; : : : ; K; j = 1; : : : ; J}, membership scores
g and the variables from data augmentation (Erosheva, 2002).
To date we have fitted the model to a 216-table, separately for K = 2; 3; 4; 5. Incrementing the number

of subpopulations from K to K + 1 produces 17 additional structural parameters, λK+1;j; j = 1; : : : ; 16,
and αK+1, and also increases the number of incidental parameters linearly with the number of subjects. As
we have increased K, we have observed a slow-down in mixing, especially for the hyperparameter α0, and
the Markov chain Monte Carlo algorithm takes longer to achieve convergence.
The grade-of-membership model is a generalized mixture model which assumes partial instead of com-

plete membership in a component. This gives us more incidental parameters. Since there is already poor
mixing for the hyperparameters of the model, the question is whether the chain with a reversible jump can
achieve reasonable mixing properties. Do the authors have any advice on how to adapt their approach in
this circumstance?
We are interested in various related applications of essentially the same structure but where the number

of variables and the number of subpopulations are considerably larger (andwhere the speed of convergence
is also important). Is there really any hope for reversible jump sampling in this context?

Jonathan J. Forster and Roger C. Gill .University of Southampton/
This paper provides welcome insight into the difficult problem of how to choose proposal distributions in
transdimensional Markov chain Monte Carlo sampling. We comment on one area which the authors did
not discuss in detail. In Section 2, they formulate the problem of proposal construction given a specified
jump function f . The choice of jump function can be critical, and the obvious choice can fail badly.
Consider moves between nested models, where the ‘down-dimension’ moves are taken to be determin-

istic. Then, the first- and higher order methods (taking all derivatives of log(A)) correspond to matching
derivatives of the log-proposal and log-conditional posterior density functions at a centring point. This
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can lead to appealing proposals such as a normal, centred at the posterior conditional mode, with vari-
ance given by the negative inverse second derivative of the log-conditional posterior density at the mode.
However, whether such a proposal generates a parameter value with non-negligible posterior probability
under the proposed model depends critically on the jump function.
Consider the ‘pines’ data used by Carlin and Chib (1995) and Dellaportas et al. (2002) to illustrate

Bayesian model determination based on Markov chain Monte Carlo sampling. There are two competing
non-nestedmodels: 1+X and 1+Z. Here, we augment themodel space to include themodel 1+X+Z and
only allow transitions between nested models. As the authors suggest, the obvious jump function for two
nested models is the identity function, preserving values of coefficients common to bothmodels. However,
this fails when the parameters are highly dependent in the larger model, as here. Despite using the optimal
proposal location and scale, it is impossible to generate a successful transition between models 1+X+Z
and 1+X. Hence this approach fails to determine the relative probabilities of 1+X and 1+ Z.
An alternative approach, appropriate in any generalized linear model determination problem, takes the

proposed value of the linear predictor in a down-dimension move to be the orthogonal projection of the
current linear predictor (an element of V0 say) onto the subspace V1 ⊂ V0 defined by the proposed model
(orthogonal with respect to an estimated posterior covariance inner product). The corresponding up-
dimension move then proposes the linear predictor as the sum of the current value and a proposal gener-
ated in V0 ∩ V⊥

1 (u parameterizes this space). A by-product of orthogonality is that the optimal proposal
for u, based on the first- and second-order methods, is independent of the current parameter values. For
the pines data this approach leads to a mobile chain, with accepted jumps on around 40% of proposals,
and an accurate estimate of the relative probabilities of 1+X and 1+Z within a few thousand iterations.
We are currently investigating this approach on more testing examples, including autoregressive pro-

cesses as in the current paper.

Nial Friel .University of Glasgow/
The authors have provided a methodology for tackling the often troublesome problem of choosing pro-
posal distributions for moves to differing dimensional spaces. As they point out, the difficulty in choosing
such proposal distributions may partly explain why the vast potential of reversible jump Markov chain
Monte Carlo (MCMC) methods has, to a certain extent, not yet been fully realized. A further reason
may be that, until now, reversible jump MCMC sampling has remained solely in a Bayesian context. It is
possible, however, to apply this methodology in a classical setting.
Classical model selection is often based on finding model parameters that maximize the likelihood

function, typically with the addition of a penalty term, e.g. the Akaike information criterion AIC. Such
problems can be tackled by combining reversible jump MCMC sampling within a simulated annealing
framework (Brooks et al., 2003). The idea is to embed the objective function f.θk; mk/ that we wish to
optimize over models mk with parameters θk, in the Boltzmann distribution defined by

bT .θk; mk/ ∝ exp
{

−
∫
.θk; mk/=T.t/

}
:

Here T.t/ denotes a temperature schedule, defined such that T.t/ → 0 slowly, as t → ∞. The simulated
annealing algorithm may then be adapted by introducing reversible jump MCMC moves so that for each
temperature we move not only within but also between models. We term this set-up transdimensional
simulated annealing (TDSA).
Results have shown that, for problemswhere the sample space is very large (greater than 500000models),

e.g. variable selection, TDSA performs well for a large number of simulated and real data sets. Indeed for
certain problems it is also possible to apply the optimal proposal methods outlined in the paper. For exam-
ple, we explored the same autoregressive model choice problem as in the paper, but where we used AIC to
distinguish betweenmodels. Applying the second-ordermethod it can be seen in this case that the proposal
scale changes with the temperature. This gives the nice property that, as the temperature increases, the
proposal variance becomes increasingly smaller, adapting to the temperature schedule. The performance
of the TDSA algorithm for this problem using the second-order method was again very favourable.
Finally we note that TDSAmight be used to tackle many non-statistical problems. In this way reversible

jumpMCMCmethodsmay permeate a broad range of diverse areas in the sameway thatMCMCmethods
and simulated annealing so clearly have.

Peter Green .University of Bristol/
I welcome this attempt to provide guidelines for proposal construction in reversible jump Markov chain
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Monte Carlo (MCMC) sampling. Being simply the adaptation (I would not even say ‘extension’) of the
Metropolis–Hastings method to variable dimension spaces, it seems safe to expect that this will remain
an important approach to ‘across-model’ MCMC simulation, and, although there are now numerous
successful implementations of the idea, clearly researchers need more help in proposal construction. This
seems to be curiously difficult to provide.
I wonder whether the authors are tackling the wrong part of the question. The proposal mechanism in

equation (5) involves both structural aspects (the choice of the functions fi;j and vi;j;θ) and quantitative
ones (the distribution of the random numbers u). In my experience it is the first of these issues that is both
more crucial and challenging, whereas the second, that addressed by the authors, is relatively amenable
to tuning based on pilot runs.
In understanding the structural aspects of a proposal, it does not necessarily pay to decompose the target

into its prior and likelihood terms. Indeed, for many purposes the origin of the variable dimension distri-
bution under study is or should be irrelevant. The situations where it might be relevant are rather special:
the rival models need a strong degree of mutual consistency. Suppose that, although different models have
quite different parameterizations, there are well-defined functions of parameters with consistent mean-
ings across models—perhaps predictive quantities or ‘fitted values’. Further suppose that prior assump-
tions about such functions are compatible across models. Then these functions are natural candidates for
establishing mappings between models that can be used to construct proposals. This, I believe, is the basis
for the utility of ‘split–merge’ and other ‘moment matching’ methods (for more on the latter, see Green
and Richardson (2001)); these work where priors are only weakly informative, and where the matching of
moments is sufficient to ensure that likelihoods are close. Incidentally, the split–merge approach is much
more flexible (and less myopic) than is commonly realized, as the values of other variables can be freely
used in proposals.
Most of the authors’ methods are locally formulated, and this is inevitable for analytic methods in all

realistic MCMC contexts. Empirical methods, such as the quite naı̈ve but surprisingly effective idea in
Section 6 of Green (2002), offer the opportunity of a more global mapping between targets in different
models; it could be fruitful to develop both classes further and to make comparisons. I would conjecture
that local methods will lose out in multimodal situations.

David Hastie .University of Bristol/
This stimulating paper presents several very interesting ideas that will hopefully go some way towards
bringing reversible jumpMarkov chainMonte Carlo algorithms into the domain of the non-expert. I have
two small points to contribute to the discussion of this paper.
My first point concerns the zeroth-order method. The higher order methods presented in the paper pro-

duce good numerical performance against the ‘vanilla’ algorithm and are intuitively appealing. However,
the same cannot be said for the zeroth-order method which is consistently outperformed in Table 1 and
only produces ‘more stable estimation of the posterior distribution’ (as claimed in Section 8.1) for one out
of the two examples presented in Table 2.
Perhaps the authors’ observation, that when used with weak non-identifiable centring the zeroth-order

method ‘may perform poorly when the prior and posterior differ greatly’, warns us not to expect toomuch.
None-the-less, it is worth emphasizing that this is exactly when there are sufficient data to tell us something
useful about the model.
The second point is again a cautionary one. Using the authors’ notation, throughout this paper the

function fi;j is assumed to be known. Essentially, this paper introduces methods for optimizing the scal-
ing of a ‘local’ proposal mechanism v.u/ given that a ‘global’ proposal function fi;j is known. However,
consider the following simple example.
Suppose that our target distribution consists of two equally weighted models. Let model 1 be N.5; 1/

and model 2 beN2{.5; 5/; I2}. Suppose that we choose f1;2 and v.u/ so that f1;2{θ; v.u/} = .θ; Ru/ where
u ∼ N.0; 1/. Now suppose that we wish to apply the zeroth-order method. Weak non-identifiable centring
is not applicable here and so the choice of b.θ/ seems arbitrary. However, choosing b.θ/ = k �= 0 gives
c.θ/ = .θ; Rk/ and the resulting equation (8) then becomes difficult to solve forR. The only feasible choice
is b.θ/ = 0. Then c.θ/ = .θ; 0/ and R = exp.25=2/.
With this proposal mechanism this value of R would give a very poor proposal. The problem

occurs because of how we have chosen f1;2 and v. To obtain a more sensible proposal we should choose
f1;2{θ; v.u/} = .θ; 5+Ru/. Then, choosing b.θ/= 0, we would obtainR= 1 and a good resulting proposal.
Clearly the choice of both f and v is a process that affects the outcome of the methods addressed in this

paper. For more difficult examples, it may not be so obvious that we have chosen fi;j or v incorrectly. Do
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the authors have any insight into this aspect of proposal design, and have they tried to incorporate any
such ideas into the methods presented in this paper?

R. King .University of Cambridge/
I congratulate the authors for addressing a difficult issue, within such a general framework. Within
Bayesian analyses, where there is model uncertainty, the reversible jump is a powerful tool for simul-
taneously exploring parameter and model space, although the practical implementation of this procedure
can be difficult. The authors present a general methodology which can be applied, possibly removing
some of the ad hoc reversible jump procedures that are often used. It is also helpful to see the methodology
applied to several examples, and the different procedures sensibly compared.
My comments relate to the issue of centring the proposal density within the reversible jump procedure.

When using reversible jump Markov chain Monte Carlo sampling, it is my general practice to begin with
fairly simple move types and proposal densities. These are then made more complex (if necessary), to
improve the mixing of the chain. In my experience, one particularly useful approach that often signifi-
cantly improves the mixing of the chain is to use an initial pilot Markov chain Monte Carlo run in the
‘global’ or ‘saturated’ model, which incorporates all the possible parameters (in the case of the autoregres-
sive example, this would be the AR(kmax) model), to obtain the posterior means (and possibly variances)
of each of the parameters. Then, when proposing to add a parameter in the reversible jump algorithm, the
proposal density for the new parameter is centred on the corresponding posterior mean obtained via the
pilot run (see for example King and Brooks (2001)). This idea can be extended in some cases, when the
global model is not expressed in terms of all possible parameters. For example, see King and Brooks (2002)
who apply this approach in the context of capture–recapture data, where models are defined in terms of
restrictions placed on the parameters. Of course this procedure assumes that the parameters retain their
interpretation for all possible models.

Hans R. Künsch .Eidgenössiche Technische Hochschule, Zurich/
My comment concerns the choice of the jump function fij in the Bayesian model determination problem,
i.e. the choice of the manifold where the new proposal will be located (the broken curve in Fig. l(c)). First,
I look at the example of the choice of the autoregressive model. Let .Xt/ be a stationary Gaussian process
with mean 0 and assume that

E.Xt |Xt−1; : : : ; Xt−k/ =
k∑

τ=1
aτXt−τ ;

var.Xt |Xt−1; : : : ; Xt−k/ = σ2k :

Then it is easy to see that

E.Xt |Xt−1; : : : ; Xt−k−1/ =
k∑

τ=1
.aτ − ρk+1ak+1−τ /Xt−τ + ρk+1Xt−k−1

where ρk+1 is the partial correlation betweenXt andXt−k−1. In addition, the conditional variance is reduced
by the factor 1− ρ2k+1. Hence it seems better to link the two nested models by the function

fk;k+1{.aτ /;σ
2
k ; v} = ..aτ − vak+1−τ /; v;σ

2
k .1− v2//

where v should be restricted to the interval .−1; 1/. This proposal distribution will always remain in the
subset of parameters corresponding to causal models which I believe is quite an advantage. Explosive
autoregressions can usually be excluded a priori, and unit roots would require a discrete component in
the prior. It is presumably also a better idea to put the prior on the partial autocorrelations than on the
autoregressive coefficients directly.
In a more general set-up, the jump function should be chosen such that we jump between distributions

which are closest with respect to some distance. From a frequentist point of view, the Kullback–Leibler
distance is natural. If the data are produced by model Mj with parameter θj and we fit model Mi by
maximum likelihood, we estimate the distribution in Mi which is closest to Lj.x|θj/ in the sense of
Kullback–Leibler divergence. In the autoregressive example, by this reasoning we obtain precisely the
jump function suggested above, but I do not know whether it is possible to obtain exact or approximate
formulae in other, more complex cases.

N. A. Lazar .Carnegie Mellon University, Pittsburgh/
I congratulate the authors on a stimulating paper that will no doubt have a significant effect on the way
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that reversible jump Markov chain Monte Carlo (MCMC) sampling is used. Although the authors open
up many intriguing avenues, I focus my comments on questions relating to model selection.
The marginal likelihood method (Chib, 1995; Chib and Jeliazkov, 2001) offers an alternative to revers-

ible jumpMCMCmethods. Together with the multitude of techniques for calculating and approximating
Bayes factors (DiCiccio et al., 1997), Bayesian statisticians have a variety of tools at their disposal for trans-
dimensionalmodel selection. As discussed byDiCiccio et al. (1997), computational costs are relevant when
evaluating competing methods. Generalizability, as so aptly demonstrated by the present authors, is also
important. The proposals given here, especially the lower order approximation methods, when they apply,
strike a balance between computation, theory and generalizable implementation.
Assuming that the model dimension or index is also a parameter in the reversible jump MCMC para-

digm, I find it somewhat unsettling that the different mechanisms in the paper lead to different posterior
model probabilities. Although it is reassuring that the ordering stays the same in all the examples reported,
if I am interested in the posterior model probabilities in their own right, how should I proceed? How
do I know which of the proposals (if any) gives me the ‘correct’ posterior? In Fig. 4, for example, the
‘vanilla’ algorithm clearly does not mix well; the auxiliary variable and the correlated auxiliary variable
implementations mix better, but they apparently sample the models in different proportions. How should
we interpret this? I would appreciate the authors’ thoughts on this issue.
Finally, there is model interpretation. The newmethodologies allow practitioners to explore a vast array

of different, possibly closely related, models. Choosing the ‘best’ among these, in the sense of highest pos-
terior probabilities, is informative only to the extent that a few models dominate the rest: if the posterior
mass is thinly spread across hundreds or thousands of candidates, little is learned. Even in the former case,
it might be difficult to give a meaningful interpretation of a specific model chosen frommany similar ones.
I worry that making reversible jump MCMC sampling too easy might tempt some users to jump into the
abyss, without careful thought about which models are reasonable, and what those models mean.

C. Osinski .Swiss Federal Institute of Technology, Lausanne/
I report on on-going work that was inspired by this paper. Our aim is to simulate the a posteriori distri-
bution for an autoregressive conditional heteroscedastic (ARCH) model where the number of parameters
is unknown. We worked on data which were simulated from a given ARCH process. The a priori law that
we have chosen for such data is the product of the uniform law on (0, pmax) for the order of the model,
and the log-normal distribution for the parameters of the ARCH(p) process. We decided to allow three
different types of jumps: increasing the order, decreasing the order or a classical Markov chain Monte
Carlo step within a given order. The move types are chosen according to fixed probabilities depending on
the current model, and the proposal law for new parameters is gamma.
Using a reversible jump algorithm without optimizing the proposal law leads to a very poor acceptance

rate, and so the ideas ofBrooks,Giudici andRoberts become interesting. To apply them,wehad to choose a
proper way to optimize the acceptance probability, i.e. to choose a central move and an optimizingmethod
as the first-order approximation. In the framework above we cannot do things anyway, or we may find
parameters that are inadmissible or we may even try to solve a problem with no solution. Hence the first
step is to check that, whatever the data or the a priori law are, the problem is well posed. Another difficulty
comes when the proposal density has no closed form, for then its parameters must be found iteratively.
Using the maximum of the a posteriori law as the central move and a first-order approximation, we obtain
an acceptance rate that lies between 25% and 50%, which is quite satisfactory, and the convergence does
not seem to be problematic. Hence ARCH models illustrate very well how this paper may be useful.
Finally it appears that the paths of the parameters are distributed around the maximum of the likeli-

hood, which is a property that we expect. However, it is known that the maximum likelihood estimators
for ARCH models may be quite bad estimators, and so also will be our Bayesian estimates, unless we
regularize the likelihood. Hence further investigation is required to obtain an efficient algorithm in this
framework, but without the ideas of this paper it seems unrealistic to apply reversible jumpMarkov chain
Monte Carlo methods to ARCH processes.

The authors replied later, in writing, as follows.

Firstly, we would like to thank everyone for their contributions to the discussion. Many important points
have been raised concerning the choice of f -function, centring function and proposal tuning parameters,
as well as broader Markov chain Monte Carlo (MCMC) issues.
Many discussants mention the issue of the choice of an appropriate f -function. This subject is only

briefly touched on in our paper, but it is clearly important. Green asks whether we are perhaps addressing
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the wrong question in the paper and argues that the choice of the jump function f is more important than
the choice of proposal. However, our experience is that pilot tuning reversible jump MCMC samplers is
not quite as easy as Green suggests in general, especially where the number of models being considered
is large and each jump needs to be individually tuned. Furthermore, sensible adaptive proposal schemes
(which allow state-dependent proposal scaling) ought to outperform static proposal parameters chosen
on the basis of initial pilot runs. In practice, sensible choices for both f and ϕ are necessary to construct
an efficient chain though, as we shall see later in the context of Hastie’s example, the kth-order methods
proposed in the paper can compensate for poor choices of jump function, suggesting that, if anything, it
is the problem of the choice of proposal that is the most crucial.
McCullagh emphasizes the need to utilize structural relationships betweenmodels to guide the construc-

tion of f , and we strongly endorse this view. This is most obviously important in the nested model case.
However, even then, the choice of f can be a tricky problem, as is highlighted by Forster and Gill. In fact
their example represents yet another problem inwhichposterior correlations (in this casewithin the saturat-
edmodel) cause difficulties withMCMCmixing. A simple remedy which would enlighten the construction
of an effective f -function involves reparameterization of the saturated model to reduce posterior correla-
tions between components greatly. In their context and others, two reparameterizations would be needed,
one fixingX and one fixingZ. Thismight be undesirable in that a different reparameterization is needed for
each move type (i.e. removing X or Z). The projection idea suggested by Forster and Gill therefore seems
natural and promising and we were pleased to see that their proposed choice of f together with our sec-
ond-order method provided such impressive results. We suspect that a similar performance might also be
obtained by removing the restriction to deterministic ‘down’ moves as suggested at the bottom of page l7,
so that no parameters remain unchanged when moving from one model to the next. This may also remove
the need for the augmentation ofmodel space to include 1+X+Z, thereby further improving the efficiency.
More generally, as wemention in the paper, and as reiterated byGreen, a practical approach to guide the

choice of f is to find statistics which have constant interpretation across models, and which can therefore
be used to guide the choice of f . The most well-known example of this is the moment matching idea of
Richardson and Green (1997) (see also Section 2.1.2), though the general applicability of this technique
is still underexplored.
We are particularly interested to hear about the experiences of others with our methods. As well as

Forster and Gill, Osinski’s example is extremely promising, and it hopefully reinforces our message that
the methodology that we describe is easily applied.We hope that these will encourage others to experiment
with these techniques though success is of course not guaranteed!
The choice of centring function may or may not be crucial in various applications. Given this, King

offers sensible advice for the nested case. Guidance in constructing the centring function on the basis of
output from the saturated model is very easy to implement and can be very worthwhile.
Ehlers remarks that in the Gaussian autoregressive example the second-order method effectively sam-

ples from the appropriate conditional distribution within the more complex model. One interesting effect
of this is that the method is independent of the choice of centring point. This seems to be due to the
stability of the second derivative of the log-Gaussian density, and this gives some clues about when the
higher order methods are relatively robust to the choice of centring function. In particular, whenever the
posterior conditional of the newparameters (conditioning on those that remain fixed) is used as a proposal,
the acceptance ratio will be constant and hence all derivatives of the acceptance ratio will be zero whatever
the centring function; see Ehlers and Brooks (2002a).
Hastie points out that a badly chosen centring point can lead to poor performance and can mislead the

algorithm about the shape of the posterior density. This is only to be expected as properties of the target
density at a unique point (the centring point) are being used to approximate the shape of a density function,
as noted by Green. For Langevin algorithms in Euclidean spaces these limitations are well known (see for
example Roberts and Tweedie (l996)). Practical advice to avoid the worst effect of this kind of problem
follows the lines of general MCMC ideas: it is usually sensible to combine more than one type of sampler,
at least one of which should be non-adaptive.
It is worth noting that, for Hastie’s example, if we take v = µ + Rσ and set the first- and second-order

log-derivatives of the acceptance ratio to 0 at b.θ/= 0, we obtain µ= 5 and R= 1. Thus, our second-order
method leads to exactly the same move as recommended by Hastie. In real examples the choice of f may
not be quite so obvious (i.e. the value 5 would not generally be known a priori), and yet the second-order
method would still be able to pick the appropriate location to compensate for Hastie’s poor initial choice
of jump function. This suggests that the additional complexity (which is trivial in this case) referred to
by Robert is perhaps well worth the cost, in general. Of course, when information is available it should
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certainly be used to construct the best jump function possible, freeing the kth-order methods to work
directly on improving efficiency rather than simply compensating for a poor choice of f .
As Green points out, where possible, it is desirable to use more descriptive global properties of the

target density in the design of proposal distributions. In fixed dimensionalMCMC sampling, it has proved
surprisingly difficult to improve on algorithms which use local information to design appropriate pro-
posals. Of course many examples exist, but none have the generic applicability of Langevin algorithms.
In the transdimensional case, many discussants have mentioned promising methodologies for doing this
(including Green, Forster and Gill, Dellaportas and Papageorgiou, and Künsch). Although none of these
methods will be as practically applicable as our methodology, they provide valuable insights which will
stimulate further research.
The choice of the jump function suggested by Künsch in the autoregressive model choice problem is

a natural suggestion for the special case where we wish to restrict attention to stationary autoregressive
time series. The idea of using a parameterization based on the partial correlations provides a natural way
of utilizing the inherent conditional independence structure of the problem. This approach can also be
employed in the graphical Gaussian case. In the paper we suggest parameterizing the model in terms of
the variance–covariance matrix since our models consist of undirected graphical Gaussian models. How-
ever, if we were interested in model determination for directed graphical Gaussian models, we would use a
parameterization consisting of regression coefficients, partial variances and partial covariances, as used for
instance in Geiger and Heckerman (1994). This approach seems very similar to that suggested by Künsch.
The reparameterization of the autoregressive model in terms of the reciprocal roots, as suggested by

Robert, also allows us to focus on stationary processes and he comments on the performance of the
zeroth-order method in this case. As with Hastie’s example, the naı̈ve use of the zeroth-order method
causes problems but the second-order method produces sensible results. For example, if we take a trun-
cated normal (restricted to [−1; 1]) proposal for a new real root, the second-order method suggests the
posterior conditional (which is also truncated normal) independently of the centring point. Similar results
are available for the complex roots (see Ehlers and Brooks (2002b)). A reparameterization from .λi; λ̄i/
to r{cos.θ/ ± i sin.θ/} also provides better results and overcomes Robert’s problem of evaluating the
acceptance ratio at the centring point with the ‘beta-type’ proposal. Obvious reparameterizations of this
sort are likely to overcome such problems in mosts contexts and, as with any computational method, a
little careful thought at the outset will help to avoid many of the potential pitfalls.
The connections between reversible jumpmethodology in discrete time and the kind of continuous time

dynamics described inMøller’s contribution are not yet fully understood, but it is clear that more research
is needed into synergies between the two areas which have developed almost independently as a result
of diverse motivations in Bayesian model choice and the simulation of point processes. To put Møller’s
contribution in the context of our paper, there is no natural analogue of the zeroth-order algorithm (since
there is no accept–reject mechanism) though our kth-order method is motivated by the requirement that
the death probability is independent of v and therefore is related to the special case in which the death-rate
is chosen to be independent of v. This special case is not necessarily easy to implement in general since it
involves needing to identify and separate b.θ/ and β.θ; v/ which involves an integral over v. Thus natural
analogues of the kth-order procedures for k � 1 exist to obtain the independence of the death-rate as a
function of v approximately.
One general point to make concerning the comparison between continuous and discrete time dynamics

is the following. The ergodic average of a function f , say, using continuous time dynamics can be written
in the form

τ∑
i=1

f.Xi/ a.i/Ei

where the a.i/s are suitable importance weights and theEis represent the normalized jump time increments
(scaled versions of min(T ; T ′) inMøller’s notation) each with an Exp(l) distribution. Here τ represents the
number of jumps achieved by the simulation in the given number of iterations. In general an estimator
with a smaller Monte Carlo error is given by

τ∑
i=1

f.Xi/ a.i/;

that is obtained by just removing the extra (and superfluous) stochasticity of the exponential weighting
times. This suggests that a more robust procedure should be obtained by running the jump chain of the
continuous time dynamics, and then using appropriate (and deterministic) importance weights to produce
the final Monte Carlo estimators.
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Meng raises the connections between data augmentation and the use of auxiliary variables. Although
both methods are formally identical in the sense that they both involve augmenting the state space of
interest to doMCMC sampling, they are motivated very differently (by intractability of the likelihood and
by the need to speed up convergence respectively). The main problem with data augmentation methods
is that the augmented data are often highly correlated with the parameters of interest. This problem and
what to do about it have been extensively investigated by a body of work led byMeng and co-workers (see
for example Meng and van Dyk (1999)). In contrast, auxiliary variables are almost always chosen to be
independent (or easily transformed to be independent) so difficulties arising fromMCMCmixing are not
usually caused by correlation between auxiliary variables and parameters.
Lazar comments on the apparent variability of Monte Carlo estimates for posterior model probability

and highlights Fig. 4 in particular. In this example, the vanilla algorithm is clearly failing tomix adequately
and would require prohibitively large run lengths to provide reliable results (we suspect that Robert may
have used different priors from those in Richardson and Green (1997), which may help to explain the
difference between his simulation results and our own). The auxiliary variable methods are also subject to
Monte Carlo error which can be minimized by taking suitably long runs. We certainly do not believe that
either of these two runs is sufficiently long for reliable inference, but they are merely used to demonstrate
the dramatic improvement in performance over the corresponding vanilla algorithm. A very simple mea-
sure of the Monte Carlo error can be obtained by looking at the variability of the posterior probabilities
of interest across replications, as provided in the caption to Table 1 for the autoregressive example. More
formal techniques are suggested by Brooks and Giudici (2000) and Brooks et al. (2002), though there
remains considerable scope for further work in this area.
Some of the contributors mentioned broaderMCMC issues. Our focus has very much been on Bayesian

model choice. Friel reminds us of the potential for the use of reversible jump methodology in a classical
framework as well. Perhaps surprisingly, adaptiveMCMC strategies are still not widely used. Andrieu and
Doucet describe a promising approach (based on Robbins–Monro optimization techniques) which might
provide a framework to allow these methods to become more widely used. The convergence problems
described by Erosheva and Feinberg seem largely concerned with within-model mixing, a problem which
can often be forgotten somewhat in view of the need to jump between models. In fact transdimensional
MCMC methods often alleviate within-model mixing problems by allowing the Markov chain to find a
model in which mixing is adequate before returning to a different part of the problematic model space.
As far as model interpretation is concerned (Lazar), posterior model probabilities are best interpreted

in the form of posterior odds via Bayes factors if onemodel is to be selected among a variety of alternatives
(Kass and Raftery, 1995). However, if predictive inference is the primary goal then model averaging is
most sensible in which case the inference under each model can be combined to provide a single robust
estimate irrespectively of the flatness or otherwise of the posterior model space. Certainly providing prac-
titioners with loaded guns, we cannot absolve ourselves of the responsibility for teaching them how to use
these tools properly. We agree that careful thought about the range of models under consideration and
their meaning in the context of the application are paramount in conducting any statistical analysis, but
we think (and perhaps this is even a good thing) that we are still some way from making reversible jump
MCMC methods ‘too easy’ for anyone who is not already fully aware of such issues.
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Andrieu, C. and Moulines, É. (2002) On the ergodic properties of some adaptive MCMC algorithms. Technical
Report. University of Bristol, Bristol.

Andrieu, C. and Robert C. P. (2001) Controlled Markov chain Monte Carlo methods for optimal sampling.
Technical Report. University of Bristol, Bristol.

Andrieu, C. and Robert, C. P. (2002) Controlled MCMC for automatic sampler calibration. Technical Report.
University of Bristol, Bristol.

Baddeley, A. andMøller, J. (l989) Nearest-neighbour Markov point processes and random sets. Int. Statist. Rev.,
2, 89–121.

Brooks, S. P., Fan, Y. and Rosenthal, J. S. (2002) Perfect forward simulation via simulated tempering. Research
Report. Cambridge University, Cambridge.

Brooks, S. P., Friel, N. and King, R. (2003) Classical model selection via simulated annealing. J. R. Statist. Soc.
B, 65, in the press.

Brooks, S. P. and Giudici, P. (2000) MCMC convergence assessment via two-way ANOVA. J. Comput. Graph.
Statist., 9, 266–285.



Discussion on the Paper by Brooks, Giudici and Roberts 55

Brooks, S. P., Giudici, P. and Philippe, A. (2002) On non-parametric convergence assessment for MCMC model
selection. J. Comput. Graph. Statist., to be published.
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