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Introduction

A stochastic process is a family {Xt} of real-valued random variables, all
defined on the same probability space (Ω,F , P) so that it will make sense
to talk about their joint distribution. In many applications the set T of
indices t is infinite (common examples include the non-negative integers Z+

or reals R+), so the random variables {Xt} won’t have a joint probability
density function or probability mass function– we must find some other way
to specify the joint distribution, and to make inference about it. In this class
we will do this for four specific classes of stochastic processes:

1. Markov Chains,

2. Diffusions,

3. Lévy Processes, and

4. Gaussian Processes.

Three of these classes are examples of Markov Processes, so it is worth while
introducing a few tools useful in the study of all of them. First, an example.
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Example: Bernoulli Sequence

Let Ω = (0, 1] be the unit interval and, for ω ∈ Ω and n ∈ N = {1, 2, ...}, let
βn(ω) be the nth bit in the binary expansion of ω,

βn(ω) = b2nωc (mod 1)

If P(dω) is Lebesgue measure, then {βn} are independent Bernoulli ran-
dom variables, each equal to one with probability 1

2
and otherwise zero. We

may use these to construct many interesting examples. For any 0 ≤ p ≤ 1
it is possible to construct a measure Pp(dω) on Ω for which the {βn} are
independent and identically distributed with Pp[βn = 1] = p.

A Little Probability Theory

Probability and Statistics are complementary sciences for studying the world
of uncertain phenomena. In Probability, we (pretend that we) know all about
the mechanism governing some unpredictable observations, and we compute
the probabilities of events we have not yet seen; in Statistics we (pretend
that we) know which events have occured and which have not, and we try to
make inference about what must have been the mechanism governing those
observations. In the Bernoulli setting, for example, probability theory allows
us to compute that the probability of an even number of 0’s before the first
1 is 2/3, if the bits are zero or one with probability one-half each, while the
probability that the total number of ones among the first 1000 bits is 500±20
is P[480 ≤ X ≤ 520 | p = 0.5] = 0.80534, while statistics allows us to infer,
upon seeing 600 ones among the first thousand bits, that it is unlikely that
the {βn} are independent with P[βn = 1] = 1

2
. More precisely, we can infer

from a Bayesian perspective that IF the βn are i.i.d. Bernoulli with some
probability parameter p, that P[p ∈ (0.574, 0.625) | X = 600] ≈ 0.90 and
P[p ≤ 0.5 | X = 600] ≈ 1.1 × 10−10, while from a frequentist perspective we
compute that P[X ≥ 600 | p = 1

2
] = 1.36 × 10−10 and infer that it would be

a miracle to see so many ones if p = 1
2
.

Probability Theory concerns what might happen in a “random experi-
ment.” It is chiefly concerned with events, which we think of informally as
“things that might happen, and then again might not,” and with random

variables, or “numbers that depend on chance.” More formally we represent
everything that might happen in the experiment by the elements of some
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set Ω called the sample space, and represent events by subsets E ⊂ Ω and
random variables by real-valued functions X : Ω → R, with the notion that
“performing the experiment” is the same as choosing some element ω ∈ Ω,
whereupon an event E has occurred if ω ∈ E and otherwise has not, and
that the value of a random variable is observed to be X(ω).

Let F denote the collection of all the Events E whose probability P[E]
we can compute. In some cases this might be all subsets E ⊂ Ω, but perhaps
that is too ambitious. Certainly we can compute P[Ω] = 1 (the probability
that anything at all happens has to be one), and we can compute P[Ec] if
we can compute P[E] (it’s just P[Ec] = 1 − P[E], since necessarily either E
occurs or it doesn’t), and we will want to be able to compute P[E1 ∩E2] and
P[E1 ∪ E2] for events E1 and E2. Any collection of sets that satisfies these
three rules is called an algebra. If it satisfies the somewhat more stringent
rule that it contains ∪Ei (the event that at least one of the {Ei} occurs)
and ∩Ei (the event that all of the {Ei} occur) for any countable collection
{Ei} ⊂ F , then F is called a σ-algebra.

We wish to assign a probability P(E) to each event E ∈ F in ways that
satisfy the “obvious” rules

1. P[E] ≥ 0 for every E ∈ F ;

2. P[Ω] = 1;

3. P[E1 ∪E2] = P[E1] + P[E2], if E1 ∩E2 = ∅. It turns out to be useful to
strengthen this to countable unions, i.e.,
P[∪Ei] =

∑

P[Ei], if Ei ∩ Ej = ∅ ∀i 6= j.

A probability is a real-valued function P : F → R that satisfies these three
rules.

The probability distribution of a random variable X is the probability
assignment µX(B) = P[X ∈ B] for sets B ⊂ R; for this to even make sense
we will need {ω : X(ω) ∈ B} = X−1(B) to be an event. It turns out that the
collection of sets B ⊂ R for which X−1(B) ∈ F is a σ-algebra, so requiring
this for intervals B = (a, b] (which we would need just to define the CDF
FX(b) = P[X ≤ b]) is just the same as asking that X−1(B) ⊂ F for the
entire collection B of “Borel sets,” the smallest σ-algebra of sets B ⊂ R that
includes all the open sets (or, equivalently, all the intervals).

For any collection {Eα} of subsets Eα ⊂ Ω there is a smallest σ-algebra
σ
(

{Eα}
)

that contains them all; for example, the “Borel Sets” B of any

3



topological space are defined to be the smallest σ-algebra containing all the
open sets. Similarly for any collection of random variables {Xα} there is a
smallest σ-algebra G = σ

(

{Xα}
)

⊂ F that contains every Xα
−1(B).

If Y is any L1 random variable (i.e., one such that E[|Y |] < ∞) then
we define the conditional expectation of Y , given G, denoted E[Y | G], to
be the best approximation to Y from among all possible functions of {Xα}.
In particular, if Y is already one of the {Xα}, or some function of finitely
many {Xαj

}, or a limit of such things, then E[Y | G] is just Y itself. More
generally, this conditional expectation is defined to be any random variable
satisfying the two conditions

E[Y | G] ∈ G (short-hand for (E[Y | G])−1(B) ⊂ G)

E[(E[Y | G] − Y )1G] = 0 for all sets G ∈ G

The first condition says that E[Y | G] has to be a limit of functions of finitely
many of the {Xα}, while the second condition says that the approximation
is so good that the average error is zero over any event in G or, equivalently,
that the error is orthogonal to every bounded function of the {Xα}.

This reduces to the familiar notion of conditional expectation

E[Y |X1, ..., Xm] =

∫

y f(~x, y) dy
∫

f(~x, y) dy

when ~X = (X1, ..., Xm) is finite dimensional with a joint density function,
so G = σ(X1, ..., Xm) depends on only finitely many random variables, but
extends the idea to conditioning on infinitely many random variables (even
uncountably many). Similarly it extends the notions of conditional proba-
bility P[A|B], with G = σ(1B) = {∅, B,Bc, Ω} and

P[A|G](ω) =

{

P[A | B ] = P[A ∩ B ]/P[B ] for ω ∈ B,

P[A | Bc] = P[A ∩ Bc]/P[Bc] for ω /∈ B.

In many applications there will be an obvious candidate for this optimal
predictor; an example is the case of martingales.

Martingales

In cases where T ⊂ R is one-dimensional the indices are naturally ordered.
We often speak of t ∈ T as “time” and think of the “past” at any time t ∈ T
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as including whatever we can observe at times s ≤ t. Let FX
t represent the

“past” at time t ∈ T of the process Xt; formally, it consists of all events
E ∈ F that depend only on Xs : s ≤ t, and in particular contains all the
events Xt

−1(B) that depend just on the process at time t. More generally a
filtration is any increasing family Ft ⊂ F of σ-algebras, and X is said to
be adapted to Ft if Xt

−1(B) ⊂ Ft for every t ∈ T . Then Ft will contain the
past of Xt but perhaps will also contain the past of other processes as well.
In the Bernoulli example,

Ft =
{

all unions of intervals of the form (i/2t, j/2t], 0 ≤ i < j ≤ 2t
}

is just the collection of all unions of half-open intervals with dyadic rational
endpoints of order t or less, and the conditional expectation E[Y | Ft] of
any integrable function Y ∈ L1(0, 1) is just the piecewise-constant simple
function whose constant value on each dyadic interval of order t is given by
Y ’s average value over that interval,

E[Y | Ft](ω) = 2−t

∫ (i+1)/2t

i/2t

Y (ω) dω,
i

2t
< ω ≤

i + 1

2t

Let Ft be a filtration. A real-valued stochastic process Mt is said to be a
martingale for Ft if

• E[|Mt|] < ∞ for every t ∈ T

• E[Mt | Fs] = Ms for every s ≤ t ∈ T .

The second condition asserts that the best predictor of Mt available, from
among all possible functions of {Mr : r ≤ s} or of any other random variables
Y with Y −1(B) ⊂ Fs, is Ms itself. This says in a very strong way that Mt is
“conditionally constant”, that on average it neither increases nor decreases
over time.

It will follow that E[Mt] = E[M0], of course, but something much stronger
is true; E[Mτ ] = E[M0] even at random times τ ∈ T , so long as the random
time “depends only on the past.” More formally, τ : Ω → T is called a
Stopping Time (or sometimes a Markov time) if

{ω : τ(ω) ≤ t} ∈ Ft

for every t ∈ T — i.e., that the event “[τ ≤ t]” depends only on the {Xs}
for s ≤ t. A stopping time in a gambling game would be a rule for when
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to quit that depends only on the past and present; this forbids quitting
“just before we lose” (too bad!). Martingales have at least three remarkable
properties that make them ideal tools for studying stochastic processes and
their inference:

• Doob’s Optional Stopping Theorem:

If Mt is a martingale and τ a stopping time then Mt∧τ is a martingale,
too. This implies that E[Mτ ] = E[M0] for any stopping time τ , if either
E[τ ] < ∞ or if {Mt} is UI. (Note: This could be taken as an alternate
definition of Martingale).

• Martingale Convergence Theorem:

If Mt is Uniformly Integrable then there exists an L1 random variable
Z s.t. Mt → Z a.s. as t → ∞, and Mt = E[Z|Ft] for all t < ∞. One
sufficient condition for uniform integrability is that |Mt| ≤ Y for some
Y ∈ L1; another is that E[|Mt|

p] ≤ K for some p > 1 and K < ∞.

• Martingale Maximal Inequality:

For any 0 ≤ t ≤ ∞ set M ∗
t ≡ sup[Ms : 0 ≤ s ≤ t], the maximum

value of Ms on the interval s ≤ t. Let p > 1 and set q = p/(p − 1) (so
1/p + 1/q = 1). Set ‖X‖p ≡ (E|X|p)1/p (the ordinary Lp norm). Then
for any c > 0,

P[|M ∗
t | > c] ≤ E[|Mt|]/c

‖M∗
t ‖p ≤ q sup

s≤t
‖Ms‖p

Notice that the Maximal Inequality is reminiscent of the Markov Inequality

P[|Y | > c] ≤ E[|Y |]/c

true for any L1 random variable, but it is much stronger— the bound is not
only on |Mt|, but on the maximum |M ∗

t |.

Examples

Recall the Bernoulli random variables βn ∼ Bi(1, 1
2
) constructed above. De-

fine a symmetric random walk starting at x ∈ Z by

St ≡ x +
t

∑

n=1

(2βn − 1),
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and let Ft = σ(Sn : n ≤ t) = σ(βn : n ≤ t). Evidently St begins at S0 = x
and at each time t takes a unit step up if βt = 1 and takes a unit step down
if βt = 0, equally likely events. It follows that St is a martingale, of course,
but so too is M(t) = (St)

2 − t (check this).
For 0 < p < 1 under the probability assignment Pp that makes the βn

into i.i.d. Bi(1,p) random variables, St will become a biased random walk
that steps to the right (i.e., up) with probability p and to the left with
probability q = 1 − p. If p 6= 1

2
then St is no longer a martingale, but both

M0(t) = (q/p)St and M1 = St − (p − q)t are martingales.
These lead to a simple and elegant solution of the famous Gambler’s Ruin

problem: for a ≤ x ≤ b let τ be the first time that St leaves the open interval
(a, b), τ ≡ min{t ∈ T : St 6= (a, b)}, i.e., the first hitting time of {a, b},
and let f(x) = P[Sτ = b] be the probability that the interval is exited to the
right. This function f(x) may be calculated using Doob’s Optional Sampling
Theorem.

For the symmetric (p = 1
2
) case,

E[Sτ | S0 = x] = [f(x)]b + [1 − f(x)]a

= a + f(x)(b − a)

= x (by Doob’s O.S.T.), so

f(x)(b − a) = x − a and f(x) =
x − a

b − a
.

For example, a gambler with a $100 fortune has a probability of f(100) =
100/110 of winning $10 before going broke, when playing a fair game betting
$1 each play with even odds (here a = 0, x = 100, and b = 110). The
expected time to complete play is available too:

E[(Sτ )
2 − τ | S0 = x] = [f(x)]b2 + [1 − f(x)]a2 − E[τ | S0 = x]

= a2 + f(x)(b2 − a2) − E[τ | S0 = x]

= x2 (by Doob’s O.S.T.), so

E[τ | S0 = x] =
(x − a)(b2 − a2)

b − a
− (x2 − a2) = (b − x)(x − a),

or 1000 plays in the gambling example above.
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For the asymmetric case,

E[(q/p)Sτ | S0 = x] = [f(x)](q/p)b + [1 − f(x)](q/p)a

= (q/p)a + f(x)[(q/p)b − (q/p)a]

= (q/p)x by Doob’s O.S.T., so

f(x) =
(q/p)x − (q/p)a

(q/p)b − (q/p)a

=
(p/q)b−x − (p/q)b−a

1 − (p/q)b−a

≈ (p/q)b−x if (p/q)b−a ≈ 0

Betting on red or black roulette in the U.S. has probability p = 9/19 of
winning and q = 10/19 of losing, so a gambler with a $100 fortune has a
probability of

f(100) =
(9/10)10 − (9/10)110

1 − (9/10)110
≈ (9/10)10 = .3487

of winning $10 before going broke, when betting $1 on red or black at U.S.
roulette. Actually he or she has the same odds (to four decimal places) of
winning $10 before going broke beginning with the largest fortune of anyone
on earth (presently about $50B)! The expected time to complete play is
available once again:

E[Sτ − (p − q)τ | S0 = x] = [f(x)]b + [1 − f(x)]a − (p − q)E[τ | S0 = x]

= x by Doob’s O.S.T., so

E[τ | S0 = x] =
[f(x)]b + [1 − f(x)]a − x

p − q

=
(b − x)[(p/q)b−x − (p/q)b−a] − (x − a)[1 − (p/q)b−x]

(p − q)[1 − (p/q)b−a]

≈
(x − a) − (b − a)(p/q)b−x

q − p
if (p/q)b−a ≈ 0

or about E[τ | S0 = 100] = [100−110(9/10)10]/[1/19] ≈ 1171 for our ill-fated
gambler.

The problem of doubling our money is even more striking: Beginning
with a stake of x = $50, the chance of doubling it to reach b = 100 before
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losing it all (so a = 0) is f(50) = 1
2

in the fair game, with an expectation
of taking 502 = 2500 plays to complete the game, while the house edge
afforded by the (green) “0” and “00” possibilities at U.S. roulette drop the
gambler’s chances to f(50) ≈ (0.9)50 = .00515, with an expected playing
time of only 940 plays. Note that St is a random walk whose steps have
expectation E[St − St−1] = E[2βt − 1] = (p − q) = −1/19, so on average it
would take about 50 × 19 = 950 steps to fall from 50 to zero; the expected
length of the game is a little shorter than that, due to the approximately one
in two-hundred chance of winning.

Now we are ready to begin studying inference for Markov Processes; we
begin by introducing Markov Chains.
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