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Limits of Simple Compound Poisson Processes

Simple Compound Poisson Process

o Y= S wX,(t\), u; €R, Ay > 0 If a. sequence of. Sl.mple Co.mpound Poisson Process.es Yt have
their Characteristic Functions (ch.f.’s) converge pointwise

e Setting v(du) = > Aoy, (du), E[ewyt(n)] = exp {t/ [ —1] () (du)}
WYy _ (MM —1)A; ot [(eMM —1) v(du) )
E[e ] € e — exp {t/ [ezwu _ 1] V(du)}
Properties:

to a continuous function then the processes converge in distribution
e Y, is a Markov process with Stationary Independent Increments too. What sort of limits can we have? Evidently v(du) must satisfy
o EY; - Y| =(t—5s) [ uv(du ‘

[Y: = Y] = ( ) [ uv(du) /}e“"“—l}y(du)<oo
o V[Y; - Y] = (t — s) [u?v(du) R

Since |e™® — 1| < 2 < oo, this is satisfied by any finite measure.

- / - /
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General Compound Poisson Processes

The simplest case is if v(R) < oo to guarantee that

/R e — 1| v(du) < oo

In this case Y; has piecewise-constant paths with independent
jumps at discrete times 0 < 71 < - -+ < 00; the holding-times

(70 — Tn—1] ~ Ex(v(R)) have independent exponential distributions

with means E[r,, — 7,_1] = V(R while the jumps have distributions
v(du)
Y, — Y. ]~ .
oo V]~

The process Y; will only be L' if this jump distribution is L'.

- /
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/Finite-Variation Limits \

The mean number of jumps per unit time is v(R); the process could
still make sense with infinitely many “small” jumps, so long as they
are always summable. We still need to have only finitely many
“big” jumps per unit time, so for every ¢ > 0 we’ll need

v((—€€)°) < oo

(otherwise the sum of all the jumps would be indeterminate), but it
€

would be okay to have v(R) = oo so long as [*_|ulv(du) < co.

These two conditions can be combined into the single requirement

/ (Jul A1) v(du) < oo
R

which, since [e™% — 1] = iwu + o(u) near u ~ 0, will still ensure that

\ /}e“"“ 1} (du) /
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/Examples \

o v(du) = A.(du): Rescaled Poisson,
Y = c X
e v(du) = 0_1(du) + J1(du): Symmetric Poisson,

Y, — Xt(l) _Xt(z)

P e P f 1
— au: OlSSOH su1n oI normals,
\/27'ro

o v(du) =

Xt

Y, =Y 0Z;
j=1

e v(du) = afBe A" du, u > 0: Poisson sum of exponentials,

Xat
Yo=) 6/8
Jj=1
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Examples

~“du, u > 0: Gamma Process, Y; ~ Ga(t, 1)
Rate of jumps bigger than € is v((—¢,€)¢) = [T u"le ™" du

o v(du) =u"lte

= F1(€) < o0, the “exponential 1ntegral function.” The
integrability condition is satisfied because

1 oo
/ (1A Jul) v(du) = / e du+/ ute™" du < o
R 0 1

o v(du) = &u™'"¢ du, u > 0: Skewed Stable Process of index &,
Y, ~ St(¢,1,1,0), with

1 oo 1
/R (1A ul) v(du) /0 Eu~t du +/1 &u du T

This is finite so long as 0 < & < 1.

/
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/Finite Quadratic Variation Limits \ / \

For any function h(u) with [ |h(u)|v(du) < oo we could set

=[h d d ite the ch.f.
The condition [, (1A |ul) v(du) < oo is necessary to guarantee that = J h(w)v(du) and rewrite the ch.f. as

e exp <t/[eiwu —1] V(du)> (1) B[] = ex (itwu +t/ (e =1 = dwh(w)) V(du>) @)

(the “itwp” part corresponds to linear drift). For any function
h(u) = u+ O(u?) near u ~ 0, we have [¢™" — 1 — iwh(u)] = O(u?)
near u ~ 0, so (2) makes sense for any linear drift u € R and any
Still if we allow both positive and negative jumps it is possible to go “jump measure” v(du) satisfying

will exist, and for increasing processes Y; (i.e., those with only
positive jumps) this is as far as we can go.

a bit further. We can have so many tiny jumps that they can’t be
summed absolutely, with a kind of mystical “infinite cancellation”! / (1 N U2) v(du) < oo
R

Here’s how it works. We have already used the fact that
e =1+ O(u) to ensure that (1) will be well-defined whenever
Jg (1A Ju]) v(du) < oo; we can do better if we use the second-order

The resulting SIT process will have paths with infinite total
variation if [ (1A |u]) v(du) = oo, but the quadratic variation and
the process itself will still be well-defined and finite.

Qpproximation et =1 +iwu + O(u?). / \ /
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Examples Compensated Compound Poisson Process

o Vi =pt+ > u; X(th;) —t> h(uj);

e v(du) = |u|~2 du: Cauchy Process, Y; ~ Ca(0,1) ' 2 X (1) = 82 hlu)Ay
Rate of jumps bigger than € is v((—¢,€)¢) =2 [T u=?du = 2
The new integrability condition is satisfied because

/R (LA Jul?) v(du) = 2/01 Ldu+ 2/100 u?du=4< o0 exp (itwu + t/[ei‘”“ — 1 — iwh(u)] V(du)) ,

o v(du) = &|lu|~1¢ du: Symmetric Stable Process of index &, where v(du) = Z ;0 (du)
Y, ~ St(&,1,0,0), with

E[e™Y] = exp | itwu+ tZ[ei‘”"j — 1 —idwh(u;)]A;
J

. e Total variation: ||Y][; = t’u -y h(Uj)Aj‘ + > |y
- i 4
/R(l A luf?) v(du) = 2/0 Eul™ du + 2/1 fu™ " du = 2-¢ e Quadratic variation: [Y]; = |u;|?

This is finite so long as 0 < £ < 2 (note increase in range of §). e Any process of form (2) can be approximated in this way.

- / - /
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Some Properties

e Y, is a Markov process with Stationary Independent Increments

e E[Y; - Y| =(t—s) [+ [pu(du)],if [, |ulv(du) < oo
(otherwise mean does not exist)

o V[Y; = Y] = (t — ) [ u’v(du)
o Set
Co(z) = / [6(z + 1) — 6(z) — h(w)¢/ (z)] v(du)

for ¢ € CZ(R); then

MY = §(Y;) — $(Y0) — /0 LY, ) ds

is a martingale.

- /
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/Lévy Processes (Lévy-Khinchine Theorem) \
a Every process with stationary independent increments
(SIT) has ch.f. of the form

w2o?

E [eXt] = exp <itw,u - +t / (e — 1 —iwh(u)) V(du))

with [ (1 A |u|2> v(du) < oo, where h(u) is an arbitrary bounded
continuous function with h(u) = u + O(u?) near u ~ 0.

Thus every SII process can be decomposed as Brownian Motion
with Drift plus a Lévy jump process,

Xt:ut+owt+Yt.

The “compensator” h(u) is unnecessary if [, (1 A |ul) v(du) < cc.

2

The measure v(du) and diffusion o* are determined uniquely, but

é N

Review: Path Description

e If A = ¥(R) < oo, paths stay constant for exponential holding
times with mean 1/, then take independent jumps with
distribution v(du)/A (e.g., Compound Poisson);

e If (R) = oo but [ |u|v(du) < oo, paths have infinitely many
jumps in every time interval, but total variation and process

itself have finite means (e.g., Gamma);

o If [|u|v(du) = oo but [(Ju] A1) v(du) < oo, total variation is
still finite but now has infinite expectation, and process mean
is infinite or undefined (e.g., Stable, 0 < £ < 1);

o If [(Ju| A1)v(du) = oo, but [(Jul* A1) v(du) < oo, paths have
infinite total variation, but finite quadratic variation (e.g.,
Stable, 1 < & < 2).

kthe choices of p and h(u) are intertwined. /
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ILM Construction

Let u € R, 0 € R4, and let v(du) be a measure satisfying

Je (LA Ju]) v(du) < oo. Let H(du,ds) ~ Po(v(du) x ds) be a
Poisson random field on R x R, and let w; be a Wiener process.
Then

Y}:ut—l—awt—i-// u H (duds)
Rx[0,t]

is a Lévy process with ch.f.

2 2

E [e"] = exp <itwu - tw20 —|—t/ (e —1) V(du))

- /
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/ILM Construction (cont’d)

Here’s how to generate the needed Poisson random field
H(du,ds) ~ Po(v(du) x ds):

Begin by picking a small number € > 0, any ¢ > 0, and initialize
n =0 and 79 = 0. Then:

1. Increment n <— n+ 1 and 7,, = 7,1 + I, for §, ~ Ex(1).
2. Draw s,, ~ Un(0,t)

3. Set u, =inf{u >0: V((—oo, —u] U [u, oo)) <7n}
(“Inverse Lévy Measure”, or ILM... W&Ickstadt, Bka 1998)

4. If u,, < €, quit; otherwise, return to step 1. above.

Now {(£un,s,)} are the events of H(du,ds), restricted to
k(—e,e)c x [0,¢]. Take limit as e — 0.

/
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Implications for Inference
If we observe Y; for all s € [0,t], then

2

e We learn o° exactly, from the quadratic variation of the

continuous part Yy — > ., [Ys — Ys_];
v(du) is now equivalent to inference about Poisson random
field. The Likelihood Ratio based on big jumps |u;| > € is:

L(V) o —tu((—e,e)°>+tn((—e,e)c) @ .
L(n) - Sj<t:’l_|£j>€ i )

-

~

e We learn jumps u; and jump times s; exactly; inference about

/ILM Construction With Compensation \

Let 1 € R, 0 € Ry, and let v(du) be a measure satisfying
Je (1A u)?) v(du) < co. Fix a bounded function h(u) = u + o(u?)
and set

e = 1 — /(_676)c h(uw)v(du).

Let H(du,ds) ~ Po(v(du) x ds) be a Poisson random field on
R x R4, and let wy be a Wiener process. Then

Ytzlim,uet+awt+// u H (duds)
eN0 (—e,e)¢x][0,t]

is a Lévy process with ch.f.

w?o?

/
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B [¢%] = exp <itw,u A / (¢ — 1 — iwh(u)) V(du))

- /
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Example 1
If Y; ~ Ga(at, ) with 8 unknown (but a known), let n(du)
correspond to § =1 and v(du) to arbitrary 3. Then

v[(—€€)] = / aute P du = aF () ~ ¢ — alogep

and
—1_—0u
v(du) _aue _ B,
n(du)  au=lev
S0
Llv)  _ atlBi(0-Fi(Bo) [T eom

55 <t, |uj|>e

= exp (at[El(e) —Ei(ef)]+(1-0) Zuj) (3)

— exp(atlog B+ (1 - B)Y;), so 3= at/Y;.

- /
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Perspective

If we had observed Y; ~ Ga(as, 8) with 8 unknown (but « known)
only at times s; = j%, 7 = 1 :n, the likelihood would depend only
on the independent increments A; ~ Ga(ay,, 5):

L) TIA%(A)% le i m(sh
L() [1(y) ¥ 1e=a /T()
= B eI=ANE; A (4)

ﬁate(l—ﬂ)Yt?

just as before, so the inference would be identical— not surprising,
since by (3,4) the sum Y; = > u; = > A; is sufficient.

- /
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Perspective

If we had observed Y; ~ Ga(as, 3) with # known and o unknown
only at times s; = j%, 7 = 1 :n, the likelihood would again depend
only on the independent increments Aj; ~ Ga(<L, 5):

L) _ TIB%(A)% e P2 /T(%)

L(n) Hg%(Aj)%fle—ﬁAj/r(%)
(a—1)t Na—1)L F(%) !
e Tl (i)

= oo (o= 1o+ 1 Tt - miog 1))

—n/t

so, for example, & = %d}_l(logﬂ + log A.) T P AR Er

something quite different from the Gamma Process result above.

- /
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/Example 2
If Y} ~ Ga(at, 8) with 8 known and « now unknown, let n(du)
correspond to @ = 1 and v(du) to arbitrary «. Then again
1/[(—6, e)c] = aF;(ef) = ¢ — alogef, and now
v(du) oau~te v

= :a’

n(du)  u~lePu

SO

Lv) _ —atBi(8o+tEi(80) I -
5;<t, |uj|>e

= exp((1 — a)tEy(Be) + Ny log )

where Ny is the number of jumps of sizes |u;| > € at times s; < .
Inference follows from taking limits in ¢; for example,

~

. N
& = lim ! T
\ N0 t log < /
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