1 Isotropic Covariance Functions

Let {Z(s)} be a Gaussian process on R", i.e., a collection of jointly normal
random variables Z(s) associated with n-dimensional locations s € R™. The
joint distribution of {Z(s)} depends only on the means u(s) = EZ(s) and
the covariances C(s,t) = E(Z(s) — pu(s)) (Z(t) — p(?)).

The process is called stationary or translation invariant if the distribu-
tion wouldn’t change under a rigid translation of the entire collection of
locations, i.e., if u(s) = u(s + h) and C(s+ h,t + h) = C(s,t) for all h; in
this case u(s) = p is constant and C(s,t) = C(s —t,0) can only depend on
the difference h = (s —t) between the two locations, so must be of the form
C(s,t) = Cy(s — t) for some function Cy(h) = C'(h,0) on R™. Not just any
function Cy(h) can be a covariance function; let’s see what the choices are.

It’s easy to see that the function Cy must be even, i.e., must satisfy
Co(h) = Co(—h), since C(s —t) = E(Z(s) — pu(s)) (Z(t) — u(t)) = C(t — ).
But more is true: if {s;} any collection of locations, then complex linear
combinations a"(Z — ) = Y a;(Z; — p;) of the centered random variables
Zj = Z(sj) (with means p; = p(s;)) must have nonnegative squared mod-
ulus E| Y a;(Z; — ,uj)|2 = >.a;C(s; — sp)ar > 0 for every set of complex
numbers {a;} C C. A function Cy(h) is called positive semi-definite if it al-
ways satisfies the inequality ik aC (sj—sg)ag > 0 for any locations s; and
complex numbers a;; this is equivalent to asking that C'(h) = C'(—h) for ev-
ery h € R™ and that ) a;C(s; — si)ag > 0 for all real numbers a; € R. One
way to get a symmetric positive semi-definite function Cy(h) is by taking
the Fourier transform

Co(h) = / ) e G(w) d'w

of any positive function G(w) on R™ or, more generally, of any finite positive
measure G(dw), because then

> a;C(s;—sp)ar = /n > (aje% ) (apes )G dw)
ik ik

:/Rn

It turns out that this is the only way to get one— that every positive semi-
definite function can be written in this form for some finite positive measure

Z a;e’i’ ‘2G(dw) > 0.
J



G(dw), called the spectral measure (if G(dw) = G(w) dw is absolutely contin-
uous, G(w) is called the spectral density). Known as “Bochner’s Theorem,’
this result is really just the Fourier inversion formula in an unfamiliar set-
ting:

G(w) = (2m)™ / e~ Cy(h) d"h.
Since the process {Z(s)} is real-valued, the spectral density G(w) =
G(—w) must be an even function and so we can write

Co(h) = /ncos(h-w)G(w)d"w
Glw) = (21)" / cos(h-w)Colh) d'w

If the Gaussian process is also isotropic, or invariant under rotations, then
G(w) = g(Jw|) must also be invariant under rotations and depend only on
the length r = |w]| of the vector w € R™. In this case we can simplify these
integrals by transforming to polar coordinates.

1.1 Polar Coordinates for Probabilists

Polar coordinates are a familiar tool in two-dimensional integrals, where the
change of variables from z € R? to r = \/x? + 23 and 6 = arctan z2/z1 (s0
x1 = rcosf, x5 = rsinf) and a change from d?z to rdrdf lead to simple
expressions for the integrals of radial functions. Equivalently, we can let o
have a uniform probability distribution (denoted by do) over the unit circle
St = {x : 22 + 23 = 1}, and change variables from x = (71, 73) to (r,0),
with d?z = dx; dzy replaced by 277 dr do.

In three dimensions the first polar approach has its analogue in the
Fuler angles, while the second is simpler with uniform measure for ¢ on
the unit sphere S? C R3, with d®xz = dz; dxo dxs replaced by 47r?drdo.
Notice that 277 and 47r? are the circumference of the circle and the area
of the sphere of radius r, respectively. In any number n of dimensions the
sphere S"~1 has area 27"/2r"~1/T'(n/2), and we can again again evaluate
integrals in polar coordinates with the uniform probability distribution do
for o € S"7! ¢ R", and d"z = 137;://22 ™" 1drdo. This makes it easy to
compute integrals of radial functions; for functions that also depend on one
or more of the components x;, it is sometimes helpful to note that the
squares {0;2} have a Dirichlet Di(1,..., 1) joint distribution, so each o; is

2 ) )
distributed as the square root of a Be(3, 251) random variable.




1.2 Evaluating Cy(h)

Switching to polar coordinates r = |w| > 0 and ¢ = w/|w| € S"~! (where
do denotes the uniform probability measure on the unit sphere S"~! in R"),
and noting that the component oj, = o -h/|h| of ¢ € S~ in the direction h
again has the same distribution as the square root of a Be(%, "T_l) random

variable, writing p for |h/,

Co(h) = /ncos(h-w)g(|w|)d"w

2ﬂ.n/2rn—1
= cos (rpoy)g(r)—————— dr do
I o om0 =

7.‘.n/2 pn—1 n
= / / cos (rpv/u)g ()2F(n/2) F(;(Péz)_l)ulﬂ—l(l—u)("—l)/2_1 dr du

:/ (2mr/p)* L T, (rp) g(r) dr, yzg—l
= / (rp/2)""T'(v 4+ 1)J,(rp) y(dr)

0 > 2cos(rp)g(r) dr ifn=1
= 0 > 2mr Jo(rp) g(r) dr ifn=2
p(2mr/p) 3/2J1/2(rp) (r)ydr ifn=3

where

(z/2)" / " 2
J(z2)= ————— cos(z cos 8) sin(8)7" db
(2) ViT(v+1/2) Jo ( ) sin(®)
is the Bessel function of the first kind of order v (see Watson, 1944). Bessel
functions aren’t as familiar as sines and cosines, but they’re common in
engineering and physics and are in the standard C library, the GNU Scientific
library (GSL), Maple and Mathematica, Matlab, etc.; see Abramowitz and

Stegun (1964, Chapter 9) for details. Here’s a plot of Jy(2):
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The plot of Jy(z) looks a little like a sine or cosine, but falls off like 1/1/z
as z — 00.

The most general isotropic covariance is given in (2), with the absolutely
continuous measure g(r) I?ZTH—"//;) r"~Ldr replaced by an arbitrary positive fi-
nite measure 7y(dr) on [0,00). Any isotropic covariance function may be
approximated by one with a discrete spectral measure y(dr) = > ;0 (dr)

assigning mass ; to finitely many points 7;:

Clp) =~ Z(Q/ij)”T(V + DI (rjp)v (3)
> ;i cos(rjp) ifn=1
= 9 22;7%Jo(rjp) ifn =2

2T 2ripdipa(rip) ifn =3

but a more common approach is to choose small parametric families of den-
sities ¢?(r) or measures g% (dr).

We can recover the spectral density g(r) = G(w) (for r = |w|) through
the Fourier inversion formula, using polar coordinates with p = |h| € Ry
and o = h/|h| € S"7L:

g(r) =Gw) = 1 cos (—h-w)Co(h)d"h
7.[.n/2 n—1
— @ //R+><Sn 1cos r,oaw)C(p)2 (n;)2) dp do
= [ rermytnenceyd. v=5-1 @
Jo 2 cos(rp)C(p) dp ifn=1
= S Jo (p/2m)Jo(rp) C(p)dp if =2 (5)

S5 ro/2mr)¥2 01 o) Clo) dp i n =3

It is hard to imagine what Cy(h) would look like for different choices of g(r); a
simple approach is to take whatever symmetric functions G(u) whose Fourier
transforms we can find, and see what we get. Here are some commonly used
covariance families, in n = 2 dimensions; in each case §; = C(0) is an overall
level parameter and s is a distance scale parameter:

e Power family

C(pl0,p) = 01exp{—|p/02"}, 0 <p <2
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Two notable covariograms in this family are the exponential (p = 1,
solid below) and the Gaussian (p = 2, dashed below):
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Notice that the exponential has a negative derivative at z = 0, so
it falls off quickly at first, then slowly levels off, while the Gaussian
has zero derivative near z = 0 then falls off very quickly. From (5)
it follows that the exponential has spectral density function g(r) =

(01922/27r)/(1 + r2922)3/2, proportional to a bivariate Cauchy density

function, while the Gaussian has spectral density g(r) = (6162%/47) exp (—

2092/ 4), proportional to a normal density.

Matérn

03
C(pl6) = FQ(Z;) (2—§2> Ko, (p/02)

where K, (z) is the modified Bessel function of the third kind of order
%

The displayed plot has shape parameter 03 = 2. The Matérn class is
quite flexible and includes the exponential family (with 63 = %), the
Gaussian family (in the limit as #3 — o0), and many others. In n
dimensions its spectral density function is

0162" 9 oy —B3-7n/2
_ NP g
90) = Fggyrz L 02777) ’
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proportional to the familiar n-variate Student’s ¢ density function with
203 degrees of freedom and variance scale 02 = 1/205203. This lends
more insight into how the Matérn reduces to the exponential when
03 = 1/2 and to the Gaussian when 03 — oo.

Spherical

61 [1 —2 (% 1— () +sin™! %)] for p < 6
0 for p > 05

C(pld) = {

The spherical covariance function is proportional to the area of inter-
section for two discs of diameter #s with centers separated by distance
p. In this model the Gaussian quantities Z; and Zj, at loci s; and s
separated by a distance greater than 65 will be independent.

62

This is not quite linear. Like the exponential, it has a negative slope at
z = 0 and falls off rapidly at first; like the Gaussian, it falls off rapidly
later and in fact reaches zero. The spectral density, while available
in closed form, isn’t illuminating; it’s best to think of the spherical
process as a convolution or moving average of Gaussian white noise,
integrated at each locus over the surrounding ball of diameter 65.

A variety of processes may be constructed similarly as kernel integrals
of standard Gaussian white noise,

2 = | klh ) C(ds);

where “standard” means that E[((ds)] = 0 and E[((ds)?] = ds. The covari-

ance is

Co(h) = E[2(0)Z(R)] = / k(h — 5) (=) ds



with spectral density

Glw) = (21)" / e=ih o (h) dh

= (2m)™" / / e hk(h — s)k(—s) dsdh
/e_iw'xk(x) dx i

so the kernel may be computed from the spectral density as

- (@n

k(x) = (2%)_”/2/eiw'xG(w)1/2dw
or, in polar coordinates,
k(p) = / T T, (rp)g(r)'? dr
0

fo \/7(308 (rp)\/g(r)dr ifn=1
= N Jo Jolrp)r \/—dr if n =2
1" Jijelrp)r 320~ 12 Jg(r)dp ifn=3

provided that the square root of the spectral density is the Fourier trans-
form of a finite positive function, i.e., is itself positive semidefinite. For the
Matérn class, the root spectral density \/g(r) (1 + 922r2)_(93+n/2)/2 will
be another n-variate ¢ density provided 03 > n/2 and in this case, setting
e = (203 —n)/4 > 0, we find

2011/2(2p02)—e—n/2
(e +n/2)\/T(2e +n/2)7n/4

leads to a moving-average kernel representation for the Matérn covariance
class. In any number n > 1 of dimensions the restriction ¢ > 0 entails
03 > n/2 > 1/2, ruling out the exponential covariance, but the Gaussian
covariance (the limiting case as 3 — o0) is available in any number of
dimensions, with

k(p) =

K(p/02)

k‘(p) _ 011/2(7T022/4)—n/2e—2p2/022
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