Bayesian Multivariate Logistic Regression

Sean M. O'Brien and David B. Dunson

Biostatistics Branch
National Institute of Environmental Health Sciences
Research Triangle Park, NC

Goals

- Brief review of existing methods
- Illustrate some useful computational techniques
 - MCMC importance sampling (Hastings, 1970)
 - Data-augmentation Gibbs algorithm (Albert & Chib, 1993)
 - Methods for sampling from truncated multivariate normal (Devroye, 1989; Geweke, 1989)
 - Metropolis algorithms for sampling correlation matrices
 (Chib & Greenberg, 1998; Chen & Dey, 1998)

Introduction

- Correlated binary data arise in numerous application
 - Longitudinal studies
 - Cluster-randomized trials
 - Epidemiologic studies of twins
- Approaches to regression analysis of multivariate binary and ordinal categorical data
 - Generalized estimating equations (GEE)
 - Generalized linear mixed models (GLMMs)
- Logistic link is common in health sciences (odds ratios)
- Some approaches that work well for frequentist inference do not work as well in Bayesian context

Two main types of models

1. Cluster-specific models. Regression parameters have cluster-specific interpretation. For example,

LogitPr[
$$y_{ij} = 1$$
] = $\mathbf{x}'_{ij}\beta + \mathbf{z}'_{ij}\mathbf{b}_i$, $\mathbf{b}_i \sim N(\mathbf{0}, \mathbf{D})$

2. Marginal models. Regression parameters have population-average (marginal) interpretation (desirable for epidemiologic studies).

$$LogitPr[y_{ij} = 1] = \mathbf{x}'_{ij}\beta$$

Full likelihood not necessary for frequentist inference – can use GEE. Need a full likelihood for Bayesian inference.

Full Likelihood Approaches to Marginal Models

Multivariate logistic regression

Parameterization via cross-odds ratios (Glonek & McCullagh, 1995)

Let
$$\bar{y}_{ij} = 1 - y_{ij}$$
.

Logit
$$\Pr(y_{ij} = 1) = \log \frac{E(y_{ij})}{E(\bar{y}_{ij})} = \mathbf{x}_{ij}\beta_{j}$$

$$\log \left\{ \frac{E(y_{ij}y_{ih})}{E(\bar{y}_{ij}y_{ih})} / \frac{E(y_{ij}\bar{y}_{ih})}{E(\bar{y}_{ij}\bar{y}_{ih})} \right\} = \mathbf{x}_{ijh}\theta_{jh}$$

$$\log \frac{\left\{ \frac{E(y_{ij}y_{ih}y_{ik})}{E(\bar{y}_{ij}y_{ih}y_{ik})} / \frac{E(y_{ij}\bar{y}_{ih}y_{ik})}{E(\bar{y}_{ij}\bar{y}_{ih}y_{ik})} \right\}}{\left\{ \frac{E(y_{ij}y_{ih}\bar{y}_{ik})}{E(\bar{y}_{ij}\bar{y}_{ih}\bar{y}_{ik})} / \frac{E(y_{ij}\bar{y}_{ih}\bar{y}_{ik})}{E(\bar{y}_{ij}\bar{y}_{ih}\bar{y}_{ik})} \right\}} = \mathbf{x}_{ijhk}\boldsymbol{\gamma}_{jhk}$$
etc...

Typically impose additional restrictions to simplify model

Full Likelihood Approaches to Marginal Models

Multivariate Probit Models (Chib & Greenberg, 1998)

$$y_{ij} = 1(z_{ij} > 0)$$

$$z_{ij} = \mathbf{x}_{ij}\beta + e_{ij}$$

$$\mathbf{e}_i = (e_{i1}, \dots, e_{ip})' \sim N(\mathbf{0}, \mathbf{R})$$

Notation

 $\mathbf{y}_i = (y_{i1}, \dots, y_{ip})'$ is a vector of binary outcomes

 \mathbf{x}_{ij} is a vector of predictors associated with y_{ij}

R is a correlation matrix for identifiability

 β and **R** are parameters to be estimated

Multivariate Categorical Regression Methods

Generalized Estimating Equations (GEE)

- Cannot use GEE for Bayesian inference.

Generalized Linear Mixed Models (GLMMs)

- Posterior is improper when simple non-informative priors are chosen. (Natarajan and Kass, JASA, 2000)
- Regression parameters have subject-specific, not population averaged, interpretation.

Multivariate logistic regression

- Modeling dependency via multi-way odds ratios is unwieldy.

Multivariate probit regression

- Advantage: Simplified computation, modeling of dependency.

Objectives

- Propose new likelihood and computational algorithm for multivariate logistic regression
 - Model for individual outcomes is univariate logistic regression
 - Correlation structure is similar to probit models
- Advantages
 - Results can be summarized by odds ratios
 - Simple and flexible correlation structure
 - Computation is simple (like probit models)
 - Posterior is proper when non-informative priors are chosen

Model specification via underlying variables

Binary logistic regression

Univariate case

$$LogitPr[y_i = 1] = \mathbf{x}_i'\beta$$

$$\updownarrow$$

Equivalent Model

$$y_i = 1(z_i > 0)$$

 $z_i \sim \text{Logistic}(\mathbf{x}_i'\beta, 1)$

Logistic density

$$f(z; \mu) = \frac{\exp\{-(z-\mu)\}}{\left[1 + \exp\{-(z-\mu)\}\right]^2}$$

Model specification via underlying variables

Multivariate generalization

Let $\mathbf{y}_i = (y_{i1}, \dots, y_{ip})'$ denote vector of binary responses

Let \mathbf{X}_i denote $(p \times q)$ matrix of predictors

$$y_{ij} = 1(z_{ij} > 0)$$

 $\mathbf{z}_i = (z_{i1}, \dots, z_{ip})' \sim \text{Multivariate Logistic}(\mathbf{X}_i \beta, \mathbf{R})$

Choice of Multivariate Logistic Density

- There is a lack of flexible multivariate logistic distributions
- Need to define a new logistic density with a flexible correlation structure
- Approach: Transform variables that follow a standard multivariate distribution
- Let $\mathbf{t} = (t_1, \dots, t_p)' \sim \text{Multivariate } t_{\nu}(\mathbf{0}, \mathbf{R})$
- Let $z_j = \mu_j + \log\left(\frac{F(t_j)}{1 F(t_j)}\right)$, where F(.) is CDF of t_j .
- Then $\mathbf{z} = (z_1, \dots, z_p)'$ is Multivariate Logistic $(\boldsymbol{\mu}, \mathbf{R})$

Form of proposed multivariate logistic density

$$\mathcal{L}_{p}(\mathbf{z}|\boldsymbol{\mu}, \mathbf{R}) = \mathcal{T}_{p,\tilde{\nu}}(\mathbf{t} | \mathbf{0}, \mathbf{R}) \prod_{j=1}^{p} \frac{\mathcal{L}(z_{j}|\mu_{j})}{\mathcal{T}_{\tilde{\nu}}(t_{j}|0,1)},$$
(1)

where the conventional multivariate t density is denoted by

$$\mathcal{T}_{p,\nu}(\mathbf{t} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \left(\frac{\Gamma((\nu+p)/2)}{\Gamma(\nu/2)(\nu\pi)^{p/2}|\boldsymbol{\Sigma}|^{1/2}}\right) \left\{1 + \frac{1}{\nu}(\mathbf{t} - \boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{t} - \boldsymbol{\mu})\right\}^{-(\nu+p)/2},$$

 $t_j = F^{-1} \left(e^{z_j} / (e^{z_j} + e^{\mu_j}) \right)$ with $F^{-1}(.)$ denoting the inverse CDF of the $\mathcal{T}_{\tilde{\nu}}(0,1)$ density, $\mathbf{t} = (t_1, \ldots, t_p)'$, $\boldsymbol{\mu} = (\mu_1, \ldots, \mu_p)'$, \mathbf{R} is a correlation matrix (i.e., with 1's on the diagonal), and

Bayesian Implementation

Probability Model

$$y_{ij} = 1(z_{ij} > 0)$$

 $\mathbf{z}_i = (z_{i1}, \dots, z_{ip})' \sim \text{Multivariate Logistic}(\mathbf{X}_i \beta, \mathbf{R}_i)$
 $\mathbf{R}_i = \mathbf{R}_i (\theta, \mathbf{X}_i)$

Prior Specification

- Assume $\pi(\beta, \theta) = \pi(\beta)\pi(\theta)$
- Choose $\pi(\beta) \sim N(\beta_0, \Sigma_{\beta})$ or $\pi(\beta) \propto 1$
- Can use any prior for $\pi(\theta)$ (including uniform)

Posterior Computation

Use MCMC Importance Sampling (Hastings, 1970)

- 1. Use data-augmentation/Gibbs/Metropolis algorithm to sample from an approximation to the posterior, $\pi_{approx}(\theta|data)$
- 2. Assign importance weights

Let θ' denote sample from $\pi_{approx}(\theta|data)$

Importance weight =
$$\frac{\pi_{\text{exact}}(\theta'|\text{data})}{\pi_{\text{approx}}(\theta'|\text{data})}$$

- Approximation is based on a (multivariate) t approximation to the (multivariate) logistic (see Albert & Chib, 1993).
- Nearly perfect approximation makes importance sampling highly efficient.

MCMC Importance Sampling (Hastings, 1970)

• A method to calculate population means, moments, percentiles, and other expectations of the form

$$E = \int_{-\infty}^{\infty} g(x)\pi(x)dx$$

- Suppose we have an MCMC algorithm that $\longrightarrow \pi^*(x) \approx \pi(x)$.
- Draw sample $\{x^{(1)}, \dots, x^{(T)}\}$ from an MCMC that $\longrightarrow \pi^*(x)$
- Define importance weight $w^{(t)} = \pi \left(x^{(t)}\right) / \pi^* \left(x^{(t)}\right)$
- Can prove that as $T \to \infty$

$$\hat{E} = \frac{\sum_{t=1}^{T} w^{(t)} g(x^{(t)})}{\sum_{t=1}^{T} w^{(t)}} \longrightarrow \int_{-\infty}^{\infty} g(x) \pi(x) dx$$

Computation for Multivariate Logistic Regression

True Model – Logistic

$$y_{ij} = 1(z_{ij} > 0)$$

$$z_{ij} = \mathbf{x}_{ij}\beta + \log\left(\frac{F(t_{ij})}{1 - F(t_{ij})}\right)$$

$$\mathbf{t}_{i} \sim \mathbf{N}(\mathbf{0}, \phi_{i}^{-1}\mathbf{R})$$

$$\phi_{i} \sim \operatorname{Gamma}\left(\frac{\nu}{2}, \frac{\nu}{2}\right)$$

Approximation -t-link

$$y_{ij} = 1(z_{ij}^* > 0)$$

$$z_{ij}^* = \mathbf{x}_{ij}\beta + \sigma t_{ij}$$

$$\mathbf{t}_i \sim \mathbf{N}(\mathbf{0}, \phi_i^{-1}\mathbf{R})$$

$$\phi_i \sim \operatorname{Gamma}\left(\frac{\nu}{2}, \frac{\nu}{2}\right)$$

- When ν and σ^2 are appropriately chosen, these two models yield virtually identical inferences about β and \mathbf{R} .
- We sample from posterior under multivariate t-link model.
 - Use data-augmentation approach (Albert & Chib, 1993)
 - Gibbs steps to update β , \mathbf{t}_i 's, ϕ_i 's.
 - Metropolis step to update **R**.

Full conditionals for t-link model

Likelihood:
$$y_{ij} = 1(z_{ij} > 0), \quad \phi_i \stackrel{\text{i.i.d}}{\sim} \text{Gamma}(\frac{\nu}{2}, \frac{\nu}{2})$$

$$\mathbf{z}_i = \{z_{i1}, \dots, z_{ip}\}' \sim N\left(\mathbf{X}_i \beta, \frac{\sigma^2}{\phi_i} \mathbf{R}\right)$$

Prior:
$$\beta \sim N(\beta_0, \Sigma_\beta), \quad \mathbf{R} \sim \pi[\mathbf{R}]$$

Full conditionals:

1.
$$\beta | \mathbf{z}, \mathbf{R}, \mathbf{y}, \boldsymbol{\phi} \sim N(\mathbf{AB}, \mathbf{A})$$

$$\mathbf{A} = \left[\mathbf{\Sigma}_{\beta}^{-1} + \sigma^{-2} \sum_{i=1}^{n} \phi_i \mathbf{X}_i' \mathbf{R}^{-1} \mathbf{X}_i \right]^{-1}$$

$$\mathbf{B} = \left[\mathbf{\Sigma}_{\beta}^{-1} \beta_0 + \sigma^{-2} \sum_{i=1}^n \phi_i \mathbf{X}_i' \mathbf{R}^{-1} \mathbf{z}_i \right]$$

2.
$$\mathbf{z}_i | \beta, \mathbf{\Sigma}, \mathbf{y}, \mathbf{z}_{(-i)}, \boldsymbol{\phi} \sim TN_{\Omega_y}(\mathbf{X}_i \beta, \frac{\sigma^2}{\phi_i} \mathbf{R})$$

3.
$$\phi_i | \beta, \mathbf{\Sigma}, \mathbf{y}, \mathbf{z}, \boldsymbol{\phi}_{(-i)} \sim \operatorname{Gamma}\left(\frac{\nu+p}{2}, \frac{\nu+\sigma^{-2}(\mathbf{z}_i - \mathbf{X}_i\beta)'\mathbf{R}^{-1}(\mathbf{z}_i - \mathbf{X}_i\beta)}{2}\right)$$

4. R use Metropolis step

Metropolis step for R

Sample a candidate value for the $p^* = p(p-1)/2$ unique elements of **R**:

unique
$$\widetilde{\mathbf{R}} \sim N_{p^*}$$
 (unique $\mathbf{R}^{(t-1)}, \mathbf{\Omega}$),

where Ω is chosen by experimentation to yield a desirable acceptance probability. If $\widetilde{\mathbf{R}}$ is positive definite, set $\mathbf{R}^{(t)} = \widetilde{\mathbf{R}}$ with probability

$$\min \left\{ 1, \frac{\pi(\widetilde{\mathbf{R}}) \prod_{i=1}^{n} N_p(\mathbf{z}_i^{(t)} | \mathbf{X}_i \beta^{(t)}, \tilde{\sigma}^2 / \phi_i^{(t)} \widetilde{\mathbf{R}})}{\pi(\widetilde{\mathbf{R}}) \prod_{i=1}^{n} N_p(\mathbf{z}_i^{(t)} | \mathbf{X}_i \beta^{(t)}, \tilde{\sigma}^2 / \phi_i^{(t)} \mathbf{R}^{(t-1)})} \right\}$$

and set $\mathbf{R}^{(t)} = \mathbf{R}^{(t-1)}$ otherwise. If $\widetilde{\mathbf{R}}$ is not positive definite, then $\mathbf{R}^{(t)} = \mathbf{R}^{(t-1)}$.

Weights for Importance Sampling

weight
$$\propto \pi_{\text{true}}(\beta, \mathbf{R}, \mathbf{z} | \mathbf{y}) / \pi_{\text{approx}}(\beta, \mathbf{R}, \mathbf{z} | \mathbf{y})$$
.

An equivalent computational formula is

weight =
$$\frac{\pi_{\text{logistic}}(\mathbf{z}|\beta, \mathbf{R})}{\pi_{t-\text{link}}^*(\mathbf{z}|\beta, \mathbf{R})}$$

$$= \prod_{i=1}^n \left(\frac{\mathcal{T}_{p,\tilde{\nu}}(\mathbf{t}_i|\mathbf{0}, \mathbf{R})}{\mathcal{T}_{p,\tilde{\nu}}(\mathbf{z}_i|x_{ij}\beta, \tilde{\sigma}^2\mathbf{R})} \right) \prod_{j=1}^p \left(\frac{\mathcal{L}(z_{ij}|x_{ij}\beta)}{\mathcal{T}_{1,\tilde{\nu}}(t_{ij}|0)} \right),$$

where $\mathbf{t}_i = (t_{i1}, \dots, t_{ip})'$ is defined by $t_j = F^{-1}(e^{z_j}/(e^{z_j} + e^{\mu_j}))$ with $F^{-1}(.)$ denoting the inverse CDF of the $\mathcal{T}_{\nu}(0, 1)$ density.

Extension to ordered categorical data

Cumulative logits model

Univariate case

$$LogitPr[y_i \le k] = \alpha_k - \mathbf{x}_i'\beta$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$y_i = \begin{cases} 1 & \text{if } z_i \in (-\infty, \alpha_1) \\ 2 & \text{if } z_i \in (\alpha_1, \alpha_2) \\ \vdots & \vdots \\ k & \text{if } z_i \in (\alpha_{k-1}, \infty) \end{cases}, z_i \sim Logistic(\mathbf{x}_i'\beta, 1)$$

If $\pi(\alpha) \propto 1$, then full conditional of α_j is uniform.

Full conditional of z_i is truncated to fall in $(\alpha_{y_i-1}, \alpha_{y_i})$

Approaches to sampling from truncated normal

- 1. Inverse CDF method
 - Draw $u \sim \text{Uniform}\left(\Phi(\frac{a-\mu}{\sigma}), \Phi(\frac{b-\mu}{\sigma})\right)$
 - Set $z = \mu + \sigma \Phi^{-1}(u)$
 - Computing $\Phi^{-1}(.)$ is slow
 - Splus crashes when $(a \mu)/\sigma > 8$
- 2. Importance sampling with exponential density for (a, ∞)
 - Draw $E_i \stackrel{\text{ind}}{\sim} \text{Exponential}(1), i = 1, 2$
 - Repeat until $E_1^2 \le 2\sigma^{-2}(a-\mu)^2 E_2$
 - Set $x = a + \frac{E_1}{\frac{a-\mu}{\sigma}}$
- 3. Geweke (1989) proposed a mixed-rejection algorithm that chooses between i) normal rejection sampling, ii) uniform rejection sampling, iii) exponential rejection sampling.

Trick for verifying propriety

- Let \mathbf{y} denote the $(n \times p)$ matrix of outcomes and let \mathbf{y}_j^* denote the data in the jth column of \mathbf{y} . In other words, $\mathbf{y}_j^* = \{y_{1j}, \dots, y_{nj}\}'$.
- Let $\pi[\beta|\mathbf{y}_j^*]$ denote the posterior distribution of β given \mathbf{y}_j^* obtained by fitting a univariate logistic regression model with $\pi[\beta] \propto 1$.
- Theorem: If at least one $\pi[\beta|\mathbf{y}_j^*]$ is proper then $\pi[\beta, \mathbf{R}|\mathbf{y}]$ is proper. Proof:

$$\pi[\beta, R|\mathbf{y}] \propto \int \Pr(\mathbf{y}|\beta, \mathbf{R}) d\beta d\mathbf{R}$$

$$= \int \int \Pr(\mathbf{y}_{j}^{*}|\beta, \mathbf{R}) \times \Pr(\mathbf{y}|\beta, \mathbf{R}, \mathbf{y}_{j}^{*}) d\beta d\mathbf{R}$$

$$\leq \int \Pr(\mathbf{y}_{j}^{*}|\beta, \mathbf{R}) d\beta \int d\mathbf{R} = \int \pi[\beta|\mathbf{y}_{j}^{*}] d\beta$$

• Note: $\pi[\beta|\mathbf{y}_j^*]$ is proper if MLE exists. Programs like SAS PROC LOGISTIC automatically check for existence of the MLE.

Example

Data: All twin pregnancies (n = 584) enrolled in the Collaborative Perinatal Project from 1959 to 1965

Outcome: Small for gestational age (SGA) birth.

Covariates: Gender, maternal age, years of cigarette smoking, weight gain during pregnancy, gestational age at delivery, and variables relating to obstetric history.

Previously analyzed by: Ananth and Preisser analyzed data via maximum likelihood using a different bivariate logistic model. Used odds ratios to model within-twins association

Goal: (i) To assess efficiency of importance sampling. (ii) To assess whether two different models yield similar results.

Example - Model and Prior Specification

Marginal probability model:

(Same as Ananth & Preisser)

logit
$$\Pr(y_{ij} = 1 \mid \mathbf{x}_{ij}, \beta, \theta) = \mathbf{x}'_{ij}\beta,$$

 $\mathbf{x}'\beta = \text{ to be defined}$

Correlation model:

Let ρ_i denote single free correlation parameter in \mathbf{R}_i .

$$\rho_i = \begin{cases} \theta_1 & \text{if subject } i \text{ is primiparous} \\ \theta_2 & \text{if subject } i \text{ is multiparous} \end{cases}$$

Prior:

$$\pi(\beta, \theta_1, \theta_2) \propto 1$$

Table 1. Bivariate logistic regression analysis of SGA in twins

		A & P, 1999 [†]	Posterior Summary	
Covariate		MLE (SE)	Mean (SD)	OR (95% CI)
Intercept	β_0	3.10 (1.62)	2.97(1.63)	
Female infant	eta_1	$0.36 \ (0.17)$	$0.35 \ (0.17)$	$1.43 \ (1.01-2.01)$
Pregnancy history	eta_2	-0.36 (0.26)	-0.39 (0.26)	$0.68 \ (0.41 - 1.13)$
	eta_3	-0.92 (0.38)	-0.97 (0.38)	$0.38 \ (0.18 - 0.79)$
	eta_4	0.44 (0.33)	0.42 (0.32)	$1.53 \ (0.81 - 2.87)$
	eta_5	0.38 (0.46)	0.45 (0.44)	$1.57 \ (0.66 - 3.68)$
$\log(age)$	eta_6	-1.03 (0.37)	-1.00 (0.47)	$0.37 \ (0.15 - 0.91)$
$\log(\text{wt gain} + 6)$	eta_7	-0.47 (0.17)	-0.46 (0.17)	$0.63 \ (0.45 - 0.88)$
$\log(yrs smoking + 1)$	eta_8	0.26 (0.10)	0.25 (0.09)	$1.28 \ (1.07 - 1.55)$
(Gest age - 37)	eta_9	0.21 (0.04)	0.21 (0.04)	
$(Gest age - 37)^2$	eta_{10}	0.02(0.01)	0.02 (0.01)	
Correlation (Primiparous)	θ_1*	_	0.16 (0.16)	
Correlation (Multiparous)	θ_2*	_	0.35 (0.07)	

 $^{*\}Pr[\theta_2 > \theta_1 | data] = 86\%$

Conclusions

- Computational algorithm is easy to program and efficient
- Posterior is proper under mild conditions
- Uses underlying normal framework, similar to probit models
- Has marginal logistic interpretation for individual outcomes
- Generalizations are straightforward.
 - Multivariate polychotomous outcomes
 - Mixed discrete and continuous outcomes