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Goals '

e Brief review of existing methods

e [llustrate some useful computational techniques
— MCMC importance sampling (Hastings, 1970)
— Data-augmentation Gibbs algorithm (Albert & Chib, 1993)

— Methods for sampling from truncated multivariate normal
(Devroye, 1989; Geweke, 1989)

— Metropolis algorithms for sampling correlation matrices
(Chib & Greenberg, 1998; Chen & Dey, 1998)
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/ Introduction '

e Correlated binary data arise in numerous application
— Longitudinal studies
— Cluster-randomized trials
— Epidemiologic studies of twins
e Approaches to regression analysis of multivariate binary and
ordinal categorical data
— Generalized estimating equations (GEE)
— Generalized linear mixed models (GLMMs)

e Logistic link is common in health sciences (odds ratios)

e Some approaches that work well for frequentist inference do

\ not work as well in Bayesian context
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Two main types of models'

1. Cluster-specific models. Regression parameters have

cluster-specific interpretation. For example,
LogitPr[y;; = 1] = x;,6 + z;;b;, b; ~ N(0,D)

Marginal models. Regression parameters have
population-average (marginal) interpretation

(desirable for epidemiologic studies).

LogitPr|y;; = 1] = X;j

Full likelihood not necessary for frequentist inference — can use
GEE. Need a full likelihood for Bayesian inference.




/Full Likelihood Approaches to Marginal Models\l

Multivariate logistic regression

Parameterization via cross-odds ratios (Glonek & McCullagh, 1995)

Let gij =1- Yij-

Logit Pr(y;; = 1) = log ) — x..83;
’ E(yw) 7
E(yijyin) , £(Yi;Yi
log { (% Yin) (g{ L ) } = X;jn0jn
E(yz’jyz’h) E(yijyih)
{ E(yijyihyik)/E(yijgihyik) }
o E(YijyinYic)! E(YijYinYik) _ 5 |
& {E(yijyz’hgik)/E(yijgih'gik) } ijhk™Y jhk
E(YijyinUit) ! E(YijYinYik)
etc...
\Typicaﬂy impose additional restrictions to simplify model /
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/Full Likelihood Approaches to Marginal Models\l

Multivariate Probit Models (Chib & Greenberg, 1998)

Yij = 1(zi5 > 0)
Zij = X0 + €ij

€;, — (62'1, .. .,eip)/ ~ N(O,R)

Notation

Vi = (Yi1,--- ,yz-p)’ is a vector of binary outcomes
x;; 1s a vector of predictors associated with y;;

R is a correlation matrix for identifiability

\ﬁand R are parameters to be estimated /
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/ Multivariate Categorical Regression Methods I\

Generalized Estimating Equations (GEE)

- Cannot use GEE for Bayesian inference.

Generalized Linear Mixed Models (GLMMs)

- Posterior is improper when simple non-informative priors are
chosen. (Natarajan and Kass, JASA, 2000)

- Regression parameters have subject-specific, not population

averaged, interpretation.

Multivariate logistic regression

- Modeling dependency via multi-way odds ratios is unwieldy.

Multivariate probit regression

\—Advantage: Simplified computation, modeling of dependency. /
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Objectives I

e Propose new likelihood and computational algorithm for

multivariate logistic regression

Model for individual outcomes is univariate logistic

regression

Correlation structure is similar to probit models

e Advantages

Results can be summarized by odds ratios
Simple and flexible correlation structure
Computation is simple (like probit models)

Posterior is proper when non-informative priors are chosen

/




/ Model specification via underlying Variablesl \

Binary logistic regression

Univariate case

LogitPrly; = 1] = x.0

1

)
Equivalent Model

z; ~ Logistic(x}3, 1)
Logistic density

R

[1 —|—exp{ —(z —,LL)H2
N /
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Model specification via underlying Variablesl

Multivariate generalization

Let y; = (vi1,---,Yip)" denote vector of binary responses

Let X; denote (p X q) matrix of predictors

yij = 1(zi; > 0)
z; = (2i1,- .., 2ip) ~ Multivariate Logistic(X;3, R)

~

10



-

~

Choice of Multivariate Logistic Density'

There is a lack of flexible multivariate logistic distributions

Need to define a new logistic density with a flexible correlation

structure

Approach: Transform variables that follow a standard

multivariate distribution

Let t = (t1,...,tp)" ~ Multivariate ¢, (0, R)

Let z; = p; + log (155;(%))7 where F'(.) is CDF of ¢;.

Then z = (21,...,2,) is Multivariate Logistic(u, R)

/
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Form of proposed multivariate logistic density'

p
25| 1
£y(el . R) = Toott 0.0 | 7 -t (1)

where the conventional multivariate ¢ density is denoted by

y —(v+p)/2
Tpo(t|p,X) = (F(V;Q()((V:)Z;L/Q%lm) {1_'_%()5_#)/2_1(17_“)} ;

t; = F~1(e® /(€% + eti)) with F~1(.) denoting the inverse CDF of
the 75(0,1) density, t = (¢1,...,t,)", o= (p1,-.., )", Ris a
correlation matrix (i.e., with 1’s on the diagonal), and

\_ /
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Bayesian Implementation'

Probability Model

z; = (2i1,.-.,2ip) ~ Multivariate Logistic(X;3, R;)
R; = R; (0, X;)

Prior Specification

e Assume 7(03,60) = w(08)mw(0)
e Choose m(3) ~ N(Bp,33) or m(3) x 1

e Can use any prior for 7(6) (including uniform)

\_

13



/ Posterior Computation I \

Use MCMC Importance Sampling (Hastings, 1970)

1. Use data-augmentation/Gibbs/Metropolis algorithm to sample
from an approximation to the posterior, mTapprox(f|data)

2. Assign importance weights

Let 6" denote sample from m,pprox (0]data)

Texact (0’ |data)
Tapprox (0’ |data)

Importance weight =

e Approximation is based on a (multivariate) ¢ approximation to
the (multivariate) logistic (see Albert & Chib, 1993).

e Nearly perfect approximation makes importance sampling

\ highly efficient. /
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e A method to calculate population means, moments, percentiles,

MCMC Importance Sampling (Hastings, 1970)

and other expectations of the form

e Suppose we have an MCMC algorithm that — 7*(z) =~ w(x).
e Draw sample {:13(1), . ,:U(T>} from an MCMC that — 7*(x)
e Define importance weight w¥) = 7 (z)) /7* (z(¥))

e Can prove that as T" — oo

. ZT: w(t)g(x(t)) 00
E = tiT e / g(x)m(x)dx
t=1 -0

15



/Computation for Multivariate Logistic Regression\l

True Model — Logistic Approximation — ¢-link
Yi; = 1(zi; > 0) yij = 1(z5; > 0)
zij = X;;3 + log (155(;)3)) zi; = Xii 0 + oty
t; ~ N(0,¢; 'R) t; ~ N(0,¢; 'R)
¢; ~ Gamma (%,%) ¢; ~ Gamma (%é)

e When v and o2 are appropriately chosen, these two models

yield virtually identical inferences about 3 and R.

e We sample from posterior under multivariate ¢-link model.
— Use data-augmentation approach (Albert & Chib, 1993)
— Gibbs steps to update 3, t;’s, ¢;’s.

\ — Metropolis step to update R. /
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/Full conditionals for t-link model

Likelihood: Yi; = 1(z; > 0), ¢ 11d Gamma(s, 5)
Z; — {Z’i17 c. 7Zip}/ ~ N (Xz y %R)
Prior: B~ N(By,23), R~m7R]

Full conditionals:
1. 8lz,R,y, ¢ ~ N (AB,A)
- 1
A= (35 +02D, 0 XIRTIX)

B = -25150 +o iy, qbiX;R_lZi]

2. Zi‘ﬁa 27Y7Z(—i)7 ¢ ~ TNQy (XZBa %R‘)

~

3. ¢il3,%,y,z, Cb(_i) ~ Gamma (V;rpj V"‘U_Q(Zi—Xzﬂ;'R_l(Zz'—Xzﬂ)

4. R use Metropolis step

\_

)
/
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Metropolis step for RI

Sample a candidate value for the p* = p(p — 1)/2 unique elements
of R:

unique R ~ N p= (unique R, ﬂ) :

where €2 is chosen by experimentation to yield a desirable
acceptance probability. If R is positive definite, set R®) = R with
probability

. {1 m(R) [T7, Ny (2" X:80, 5% /¢{"R) }
min < 1, —
m(R) [T7y Ny (2" X80, 52 /¢ R(ED)

and set R = R(=1 otherwise. If R is not positive definite, then

R = R(-1), /
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Weights for Importance Sampling'

Welght X Ttrue (67 R7 Zb’) /Wapprox (67 R7 Zb’) .

An equivalent computational formula is

TMogistic (z|8,R)
Tt Jink (217 R)

- H ( <zz|(sz%,I~{2R ) H ( Tff| xl ﬁ>)>

1=1 71=1

weight

where t; = (t;1,...,t;)" is defined by t; = F~1(e% /(e* + eMi))
with F'~1(.) denoting the inverse CDF of the 7,,(0, 1) density.

\_ /
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Extension to ordered categorical data'

Cumulative logits model

Univariate case

Yi = 4

;

1
2

k
\

LogitPr[y; < k] = ai — X,

0

if z; € (—o0, 1)

if 2 € (041, Oég)

, z; ~ Logistic(x;3,1)

if 2; € (ag—1,00)

If m(ar) o< 1, then full conditional of «; is uniform.

\_

Full conditional of z; is truncated to fall in (o, 1, ay,)

~
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/Approaches to sampling from truncated normal\l

1. Inverse CDF method
e Draw u ~ Uniform (CD(&;“), CID(b_—“))

(o)

o Set 2=+ o® (u)
e Computing ®~1(.) is slow
e Splus crashes when (a — p)/o > 8

2. Importance sampling with exponential density for (a, o)

e Draw FE; ind Exponential(1),i = 1,2
e Repeat until E% < 207 %(a — p)?Ey

o Set . =a+ 2L

(o2

3. Geweke (1989) proposed a mixed-rejection algorithm that

chooses between i) normal rejection sampling, ii) uniform

\ rejection sampling, iii) exponential rejection sampling. /
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/ Trick for verifying propriety' \

o Let y denote the (n X p) matrix of outcomes and let y; denote the

data in the jth column of y. In other words, y; = {y1;,...,ynj}

o Let m[8|y;] denote the posterior distribution of 3 given y; obtained
by fitting a univariate logistic regression model with 7[3] o 1.

e Theorem: If at least one 7|B|y}]| is proper then 7|3, R|y] is proper.
Proof:

wB.Rly] [ [ Pr(yls, R)dsar
= //Pr(Y§|ﬁ,R)XPr(YIﬁ,R,Y§)d6dR
< [ Priyi8. RS [ dR = [ wlBlyilas

e Note: 7[83|y}] is proper if MLE exists. Programs like SAS PROC
\ LOGISTIC automatically check for existence of the MLE. /
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4 Bxampic} A

Data: All twin pregnancies (n = 584) enrolled in the Collaborative
Perinatal Project from 1959 to 1965

Outcome: Small for gestational age (SGA) birth.

Covariates: Gender, maternal age, years of cigarette smoking,
weight gain during pregnancy, gestational age at delivery, and
variables relating to obstetric history.

Previously analyzed by: Ananth and Preisser analyzed data via
maximum likelihood using a different bivariate logistic model. Used

odds ratios to model within-twins association

Goal: (i) To assess efficiency of importance sampling. (ii) To assess
whether two different models yield similar results.

\_ /
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/ Example - Model and Prior Speciﬁcation' \

Marginal probability model:

(Same as Ananth & Preisser)

logit Pr(y;; = 1|x;;,0,0) = Xfijﬁ?
x'3 = to be defined

Correlation model:

Let p; denote single free correlation parameter in R,;.

61 if subject ¢ is primiparous
pi =
0, if subject ¢ is multiparous

7T(67(91792) ox 1
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Table 1. Bivariate logistic regression analysis of SGA in twins

A & P, 19997 Posterior Summary
Covariate MLE (SE) Mean (SD) OR (95% CI)
Intercept Bo 3.10 (1.62) 2.97 (1.63)
Female infant 51 0.36 (0.17) 0.35 (0.17)  1.43 (1.01-2.01)
Pregnancy history Ba -0.36 (0.26)  -0.39 (0.26) 0.68 (0.41-1.13)
B -0.92 (0.38)  -0.97 (0.38) 0.38 (0.18-0.79)
Bs  0.44 (0.33)  0.42 (0.32) 1.53 (0.81-2.87)
Bs  0.38 (0.46)  0.45 (0.44) 1.57 (0.66-3.68)
log(age) Bs  -1.03 (0.37)  -1.00 (0.47) 0.37 (0.15-0.91)
log(wt gain + 6) B -0.47 (0.17)  -0.46 (0.17) 0.63 (0.45-0.88)
log(yrs smoking + 1) Bs  0.26 (0.10)  0.25 (0.09) 1.28 (1.07-1.55)
(Gest age — 37) Bo 0.21 (0.04) 0.21 (0.04)
(Gest age — 37)? Bio  0.02 (0.01)  0.02 (0.01)
Correlation( Primiparous)  6;x - 0.16 (0.16)
Correlation (Multiparous) 2% -~ 0.35 (0.07)

* PI‘[@Q > Hl\data] = 86%
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Conclusions

Computational algorithm is easy to program and efficient
Posterior is proper under mild conditions

Uses underlying normal framework, similar to probit models
Has marginal logistic interpretation for individual outcomes

Generalizations are straightforward.
— Multivariate polychotomous outcomes

— Mixed discrete and continuous outcomes
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