More on Survival Analysis

1. Dependent variable or response is the waiting time until the occurrence of an event.

2. Observations are censored, in the sense that for some units the event of interest has not occurred at the time the data are analyzed.

3. There are predictors or explanatory variables whose effect on the waiting time we wish to assess.
Definition Review:

- $T =$ waiting time until occurrence of an event
- $f(t) =$ probability density function of T
- $F(t) = \Pr(T \leq t) =$ prob event occurs prior to t
- $\lambda(t) = \lim_{dt \to 0} \frac{\Pr\{t < T \leq t + dt \mid T > t\}}{dt} = \frac{f(t)}{S(t)} = -\frac{d}{dt} \log S(t) =$ hazard function
- $S(t) = 1 - F(t) = \int_t^\infty f(x)dx = \exp\left\{ - \int_0^t \lambda(t)dx \right\} =$ Survival function
- $\Lambda(t) = \int_0^t \lambda(x)dx =$ Cumulative hazard function
• Survival and hazard functions provide alternative but equivalent characterizations of the distribution of T.

• Given the survival function, we can always differentiate to obtain the density and then calculate the hazard.

• Given the hazard, we can always integrate to obtain the cumulative hazard and then exponentiate to obtain the survival function.
Example: The simplest possible survival distribution is obtained by assuming a constant risk over time:

$$\lambda(t) = \lambda \quad \text{for all } t.$$

The corresponding survival function is

$$S(t) = \exp \left\{ \int_0^t \lambda ds \right\} = \exp \left\{ -\lambda t \right\},$$

which is the exponential distribution with parameter λ.

The density is obtained by multiplying the survival function by the hazard to obtain

$$f(t) = \lambda \exp \left\{ -\lambda t \right\},$$

which has mean $1/\lambda$. This distribution is very important in survival analysis.
Expected Lifetime

Letting μ denote the mean or expected value of T, we have

$$\mu = \int_0^{\infty} t f(t) \, dt.$$

Integrating by parts, and noting that $-f(t)$ is the derivative of $S(t)$, which has $S(0) = 1$ and $S(\infty) = 0$, we have

$$\mu = \int_0^{\infty} S(t) \, dt,$$

which implies that the mean is simply the integral of the survival function.
• Note that we have assumed that the event will occur if we wait long enough, with probability 1 (i.e., \(S(\infty) = 0 \))

• This conditional implies that the cumulative hazard must diverge (i.e., \(\Lambda(\infty) = \infty \)).

• Clearly, in many applications, there are events which are not certain to occur.
Cancer Clinical Trials Example

- In many cancer clinical trials, tumors are removed surgically and the patients are treated with chemotherapy.
- Often, the time to reoccurrence of the cancer is the response variable of interest.
- Standard survival models assume that all patients will eventually get the cancer again.
- However, some patients may actually be cured.
Cure Rate Models

• If some proportion, π, of the patients are cured and are therefore no longer at risk of getting the tumor, we have

$$\lim_{t \to \infty} S(t) = S(\infty) = \pi$$

• The density, $f(t)$, then consists of a mixture of a point mass at ∞ and a proper density,

$$f(t) = \pi 1_{(t=\infty)} + (1 - \pi) f^*(t).$$

• Letting $f^*(t)$ denote the density for those subjects who are not cured, we have

$$f^*(t) = \frac{f(t)}{1 - S(\infty)} = \frac{f(t)}{1 - \pi} \quad \text{and} \quad \lambda^*(t) = \frac{f^*(t)}{S^*(t)} = \frac{f(t)}{S(t) - S(\infty)}$$

• We can implement this idea by assuming each subject has a latent binary random variable, ξ, with $\xi = 1$ if the subject is cured and $\xi = 0$ otherwise.
More on **Non-informative Censoring**

- **Type I censoring**: a sample of \(n \) units is followed for a fixed time \(\tau \). The number of units experiencing the event is random, but the study duration is fixed.

- **Fixed censoring**: Each unit has a potential maximum observation time \(\tau_i \), for \(i = 1, \ldots, n \) which may be different for different subjects, but is fixed in advance.

- **Type II censoring**: a sample of \(n \) units is followed as long as necessary until \(d \) deaths have occurred. Number of events is fixed, but study duration is random.

- **Random censoring**: Each unit has a potential censoring time \(C_i \) and a potential lifetime \(T_i \), which are assumed to be independent random variables. We observe \(Y_i = \min\{C_i, T_i\} \) and an indicator \(\delta_i \) telling us the type of event (censored or death).
• All of these censoring mechanisms are non-informative and they lead to essentially the same likelihood function.

• Censoring of an observation should not provide any information regarding the prospects of survival of that particular unit beyond the censoring time.

• **Assumption**: All we know for an observation censored at duration t is that the lifetime exceeds t.
Illustrative Example: Rodent Tumorigenicity Studies

• Scientific interest focuses on whether a test chemical increases tumor incidence, which is defined as the hazard rate of tumor onset for tumor free animals.

• Animals are randomized to dose groups for treatment with the test agent for their lifetimes, with animals surviving to 2 years killed in a terminal sacrifice.

• Many animals die prior to 2 years, due to toxicity associated with the test agent, to tumor-related causes, or to other natural causes (also in some cases sick animals are killed in a moribund sacrifice for humane reasons).
Data Available:

- Dose of exposure, x_i.
- Time of death, t_i.
- Type of death, $\delta_i = 1$ if natural causes and $\delta_i = 0$ if sacrifice
- Occurrence of tumors, $\Delta_i = 1$ if tumor at death and $\Delta_i = 0$ otherwise.

We care about inferences on increases with dose in tumor incidence

Homework Exercise:

- How do we analyze these data (Conceptually)?
- Is informative censoring an issue?
Likelihood Function for Censored Data

Suppose we have n units, with unit i observed for a time t_i. If the unit died at t_i, its contribution to the likelihood function (under non-informative censoring) is

$$L_i = f(t_i) = S(t_i)\lambda(t_i)$$

If the unit is still alive at t_i, all we know under non-informative censoring is that the lifetime exceeds t_i. The probability of this event is

$$L_i = S(t_i),$$

which becomes the contribution of a censored observation to the likelihood.

Letting d_i be a death indicator, we have

$$L = \prod_{i=1}^{n} L_i = \prod_{i=1}^{n} \lambda(t_i)^{d_i}S(t_i).$$

Taking logs, we have

$$\log L = \sum_{i=1}^{n} \{d_i \log \lambda(t_i) - \Lambda(t_i)\}.$$
Suppose we have exponentially distributed survival times, so that \(\lambda(t) = \lambda \) for all \(t \). Then, the log likelihood follows the form

\[
\log L = \sum_{i=1}^{n} \{d_i \log \lambda - \lambda t_i \}.
\]

Letting \(D = \sum d_i \) be the total number of deaths and \(T = \sum t_i \) be the total time at risk, we have

\[
\log L = D \log \lambda - \lambda T.
\]

Differentiating this with respect to \(\lambda \), the score function is

\[
u(\lambda) = D/\lambda - T.
\]

Setting this equal to 0, we obtain the maximum likelihood estimate

\[
\hat{\lambda} = D/T,
\]

which is simply the total number of deaths divided by the time at risk.

The observed information is minus the second derivative of the score, which is \(I(\lambda) = D/\lambda^2 \). Taking the inverse and plugging in the mle, we have

\[
\text{var}(\hat{\lambda}) = D/T^2.
\]
A useful observation is that the log-likelihood for exponential survival data is exactly the same (up to a proportionality constant) as the likelihood that would have been obtained by treating D as a Poisson random variable with mean λT.

This will be useful in extending the methods to account for predictors by defining Poisson generalized linear models.

Until this point, we have focused on the homogeneous case where everyone has the same survival distribution. In most applications, interest will focus on inference on predictors.
Survival Modeling

Approach I. Accelerated Life Models

We briefly discussed the Cox proportional hazards model earlier in the course. The Cox model assumes multiplicative covariate effects on the hazard function.

Alternative:
Let T_i denote the (possibly unobserved) survival time for subject i.
Since T_i is positive, we might consider the model:

$$ \log T_i = \mathbf{x}'_i \beta + \epsilon_i, $$

where ϵ_i is a suitable error term

Exponentiating, we have

$$ T_i = \exp(\mathbf{x}'_i \beta) T_{0i}, $$

where T_{0i} is the exponentiated error term and we let $\gamma_i = \exp(\mathbf{x}'_i \beta)$ as shorthand.
Let $S_0(t)$ denote the survival function in a reference group (group zero).

Let $S_1(t) = S_0(t/\gamma)$, which implies that a member of group one will be alive at age t with the same probability that a member of group zero will be alive at age t/γ.

For $\gamma = 2$, this would be half the age, so the probability that a member of group one would be alive at age 40 would be the same as the probability that a member of group zero would be alive at age 20.

Therefore, model of this time as known as Accelerated Failure Time (AFT) models.
Different kinds of parametric AFT models are obtained by assuming different error distributions.

For example, if the $\epsilon_i \sim N(0, \sigma^2)$, then we have a log-normal model for T_i. For censored data, this model is known (primarily in the economics literature) as the **Tobit** model.

Alternatively, if the ϵ_i have an extreme value distribution with density

$$f(\epsilon) = \exp \{ \epsilon - \exp(\epsilon) \},$$

then T_{0i} has an exponential distribution and we obtain the exponential regression model, where T_i is exponential with hazard λ_i satisfying the log-linear model

$$\log \lambda_i = x_i' \beta.$$

Parametric accelerated failure time models, are just standard linear regression models applied to the log of the survival times. The only technical hurdle, which is typically trivial to deal with in the parametric case, is the censoring.
Parametric Proportional Hazards Models

Recall that the proportional hazards model can be expressed as:

$$\lambda_i(t; x_i) = \lambda_0(t) \exp(x'_i \beta).$$

By making different parametric assumptions on the baseline hazard, we can formulate different kinds of proportional hazards models. The simplest case is to assume exponentially distributed survival times in the baseline group, which implies $\lambda_0(t) = \lambda_0$ and hence

$$\lambda_i(t; x_i) = \lambda_0 \exp(x'_i \beta).$$

Note that this model is both a proportional hazards model and an accelerated failure time model.
The only other case where the two families coincide is when the baseline survival times follow a Weibull distribution,

\[S(t) = \exp \left\{ - (\lambda t)^p \right\}, \]

which results in the hazard function

\[\lambda(t) = p\lambda(\lambda t)^{p-1}, \]

for parameters \(\lambda > 0 \) and \(p > 0 \).

If \(p = 1 \), then the Weibull model reduces to the exponential model and the hazard is constant over time.

If \(p > 1 \), then the risk increases over time

If \(p < 1 \), then the risk decreases over time
Other Properties of Weibull model:

- The logarithm of the hazard is a linear function of log time with slope \(p - 1 \),

\[
\log \lambda(t) = \log p + p \log \lambda + (p - 1) \log t.
\]

- If the baseline survival distribution is Weibull, then multiplying the hazard by a constant results in a Weibull distribution. For example, if

\[
\lambda_0(t) = p \lambda(t)^{p-1},
\]

then, for \(\gamma_i = \exp(x_i' \beta) \), we have

\[
\lambda_i(t; x_i) = \lambda_0(t) \gamma_i = p(\lambda \gamma_i^{1/p})(\lambda \gamma_i^{1/p}t)^{p-1}
\]

and hence the Weibull family is closed under proportional hazards

- If the baseline survival distribution is Weibull and we modify time by a multiplicative constant in the AFT model, the resulting distribution is still a Weibull, so the family is also closed under accelerated failure times.
Strategies for Model Fitting

1. The most straightforward approach is to assume a parametric model for the baseline hazard $\lambda_0(t)$ and then proceed with maximum likelihood or posterior computation. Common choices of parametric models include the exponential, Weibull, gamma, log-normal and generalized F distributions.

2. Another strategy is to use a flexible model, where we make mild assumptions about the baseline hazard $\lambda_0(t)$. For example, a common approach is to assume constant hazards within pre-specified time intervals, resulting in a piecewise exponential model.

3. A final strategy is to follow a non-parametric approach in which the baseline hazard $\lambda_0(t)$ is left completely unspecified. This approach relies on the partial likelihood proposed by Cox (1972). From a Bayesian perspective, one can potentially choose a flexible prior for $\lambda_0(t)$ (e.g., by using a Gamma process).
Piecewise Exponential for Baseline Hazards in Cox Proportional Hazards Model

Suppose that we partition time into J intervals with cutpoints

$$0 = \tau_0 < \tau_1 < \ldots < \tau_J = \infty,$$

with the jth interval defined as $[\tau_{j-1}, \tau_j)$.

We assume that the baseline hazard is constant within each interval:

$$\lambda_0(t) = \lambda_j \quad \text{for } t \in [\tau_{j-1}, \tau_j),$$

and hence the baseline hazard is characterized using J parameters, $\lambda = (\lambda_1, \ldots, \lambda_J)'$.

Clearly, we can choose a large number of cutpoints in order to approximate any baseline hazard function, though care should be taken to avoid choosing too many intervals since we may not have enough data.
Introducing predictors, \mathbf{x}_i, the hazard for the ith person in the jth interval is

$$\lambda_{ij} = \lambda_j \exp(\mathbf{x}_i' \beta),$$

and taking the logarithm we have

$$\log \lambda_{ij} = \alpha_j + \mathbf{x}_i' \beta,$$

where $\alpha_j = \log \lambda_j$ and it is trivial to incorporate time-dependent covariates and coefficients.

This model can be shown to be equivalent to a Poisson regression model.
Let t_{ij} denote the time spent by individual i in interval j

Let $d_{ij} = 1$ if individual i dies in interval j and $d_{ij} = 0$ otherwise

Assuming that $d_{ij} \sim \text{Poisson}(t_{ij}\lambda_{ij})$ results in the correct likelihood for estimating λ and β (Show as homework exercise)

Hence, we can simply re-format the data and fit a Poisson log linear model.