1. [Ex 3.105, 3.85] A reservation service employs five information operators who receive requests for information independent of one another, each according to a Poisson process. Suppose the mean time between requests for one operator is 30 seconds.

 a. What is the probability that during a given 1-min period, the operator receives no requests?

\[e^{-2} = 0.1353 \] (same as solution to ex 3.105(a))

 b. Let \(Y \) = the number of operators (among the five) who receive no requests during a given 1-min period. What is the distribution of \(Y \) (specify the name and the parameters of the distribution)?

\(Y \) is distributed as Binomial with \(n = 5 \) and \(p = 0.1353 \)
2. [Ex 4.339(d)] Suppose the diameter of trees of certain type is normally distributed with $\mu = 8.8$ and $\sigma = 2.8$. Define a value c such that the interval $(8.8 - c, 8.8 + c)$ includes 98% of all diameter values. So

$$\Phi\left(-\frac{c}{2.8}\right) = 0.01$$

3. [Ex 4.44] Express the following probability by using $\Phi(.55)$ and $\Phi(1.72)$.

$$P(-1.72 \leq Z \leq -.55) = \Phi(1.72) - \Phi(.55)$$

4. [Ex 4.51] $X \sim Bino(n = 500, p = 0.4)$ with $\mu_x = 200$ and $\sigma_x = 10.95$. What is the probability that X is more than 175, i.e. $P(X > 175)$? (Circle the correct answer.)

A. $\Phi\left(\frac{175 + 0.5 - 200}{10.95}\right)$

B. $1 - \Phi\left(\frac{175 + 0.5 - 200}{10.95}\right)$

C. $\Phi\left(\frac{175 - 0.5 - 200}{10.95}\right)$

D. $1 - \Phi\left(\frac{175 - 0.5 - 200}{10.95}\right)$

$P(X > 175) = 1 - P(X \leq 175)$, so B.