MTH135/STA104: Probability

Homework \# 1 Due: Tuesday, Sep 6, 2005

Prof. Robert Wolpert

Reminder: On this and every homework, give (non-integer) numberical answers as fractions in lowest terms or as decimals to four significant digitsso $\pi=3.142,24 / 6=4$.

1. (after $p .30$, prob. 4) Let $\Omega=\{0,1,2\}$ be the outcome space in a model for rolling a (six-sided) die twice and counting the total number of 1's. Tell if each of the following events can be expressed as a subset of Ω; if so, give the subset explicitly; if not, tell why:
a) Both rolls are 1's;
b) One roll is a 1 , the other isn't;
c) At least one roll is a 1 ;
d) At least one roll is a 3;
e) The first roll is a 1 .
2. The events A and B have probabilities $\mathrm{P}[A]=0.2$ and $\mathrm{P}[B]=0.4$, while $\mathrm{P}[A B]=0.1$. Find:
a) $\mathrm{P}\left[A^{c}\right]=$
b) $\mathrm{P}[A \cup B]=$
c) $\mathrm{P}\left[A \cup B^{c}\right]=$
d) $\mathrm{P}\left[A B^{c}\right]=$
e) $\mathrm{P}\left[A^{c} B^{c}\right]=$
3. Find the one-dimensional integrals below, as functions of $x \geq 0$:
a) $\int_{0}^{x} e^{-c t} d t$, for each real number $c \in \mathbb{R}$;
b) $\int_{-x}^{x} t^{2} d t$;
c) $\int_{0}^{x} t^{a} d t$, for every number $a \in \mathbb{R}$
4. Let $T=\{(x, y): 0<x, 0<y, 0<x+y<1\}$ be the indicated triangle in the first quadrant.
a) Draw the region T; label the axes.
b) Evaluate the integral

$$
\iint_{T} 1 d x d y
$$

in two ways - as an iterated integral $\int\left[\int \ldots d x\right] d y$ (first $d x$, on the "inside," then $d y$ on the "outside") and $\int\left[\int \ldots d y\right] d x$. Show your limits of integration clearly. Do you get the same answer both times?
c) Evaluate the integral

$$
\iint_{T} x d x d y
$$

in any way you like.
5. Evaluate the limits below:
a) $\lim _{n \rightarrow \infty} \frac{3 n+4}{2 n-1}$
b) $\lim _{n \rightarrow \infty} \frac{n^{2}+n+7}{2 n^{2}-1}$
c) $\lim _{n \rightarrow \infty} \frac{e^{n}}{n}$
d) $\lim _{n \rightarrow \infty} \frac{2 n+1 / n}{2 n+1 / n}$
e) $\lim _{n \rightarrow \infty}(\pi / 3)^{n}$
f) $\lim _{n \rightarrow \infty}(1-2 / n)^{n}$
6. Find the sums, each with n terms, for each non-negative integer $n \in \mathbb{N}$:
a) $S_{1}=\sum_{i=1}^{n} 3=3+3+\ldots+3$
b) $S_{2}=\sum_{i=1}^{n} i=1+2+3+\ldots+n$
c) $S_{3}=\sum_{i=1}^{n} 2^{i}=2+4+8+\ldots+2^{n}$
d) $S_{4}=\sum_{i=1}^{n} 2^{-i}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+2^{-n}$

Hint: Write the sum for S_{2} twice, once forward and (just below that) once backward. Compare the sums S_{3} and $2 \times S_{3}$, again writing out the terms for one above the other. Do something similar for S_{4}.
7. Write as fractions in lowest terms
a) 0.45
b) $3 / 4-2 / 3$
c) $1 / 99-1 / 101$
8. Write as decimals to exactly four significant digits
a) $1 / 7$
b) $\sqrt{200}$
c) $\sqrt{1 / 200}$
9. An experiment consists of testing six patients' reaction times before and after administering a drug that reproduces the effect of ingesting 1 oz of ethanol. For each subject we record the difference D_{i} (before minus after) of reaction times, measured in milliseconds.

Which of the following could be an Outcome Space for this problem? Give a SHORT explanation for each answer, and for each give the number of elements $\#(\Omega)$. For a note on notation, see p. 4 below.
a) $\Omega=[0,1]^{6}$, with outcomes $\omega=\left(D_{1}, D_{2}, \ldots, D_{6}\right)$;
b) $\Omega=\mathbb{R}^{6}=(-\infty, \infty)^{6}$, with outcomes $\omega=\left(D_{1}, D_{2}, \ldots, D_{6}\right)$;
c) $\Omega=\{0,1,2,3,4,5,6\}$, the number of subjects whose reaction time became worse (i.e., bigger);
d) $\Omega=\{1,2,3,4,5,6\}$, one for each subject;
e) $\Omega=\{++++++,+++++-,++++-+, \ldots,------\}$, where each string of six \pm signs indicates whether each of the six subjects' reaction times increased ("+") or not ("-")
10. The (arithmetic) average of a set A of numbers is just their sum divided by how many there are,

$$
\operatorname{avg}(A)=\sum\{a: a \in A\} / \#(A)
$$

Set $A=\{1,2,3\}$. In each of the following pairs, which is larger- or are they the same?
a) $\operatorname{avg}\left(\left\{a^{2}: a \in A\right\}\right)$ or $\operatorname{avg}(A)^{2}$?
b) $\operatorname{avg}\left(\left\{2^{a}: a \in A\right\}\right)$ or $2^{\operatorname{avg}(A)}$?
c) $\operatorname{avg}(\{2 \times a: a \in A\})$ or $2 \times \operatorname{avg}(A)$?
d) $\operatorname{avg}(\{2+a: a \in A\})$ or $2+\operatorname{avg}(A)$?

Note: In traditional mathematics notation, for any real numbers $a<b$, the set:
$[a, b]$ denotes the closed interval $\{x: a \leq x \leq b\} ;$
(a, b) denotes the open interval $\{x: a<x<b\}$;
$\{a, b\}$ denotes the finite set containing only a and b.
For any set \mathcal{S} and integer $n \in \mathbb{N}$, the symbol " \mathcal{S}^{n} " denotes the set of ordered n-tuples $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ with each $s_{i} \in \mathcal{S}$ - for example, \mathbb{R}^{3} is the set of threetuples $\left(x_{1}, x_{2}, x_{3}\right)$ of real numbers $x_{i} \in \mathbb{R}=(-\infty, \infty)$, a suitable set for indexing points in space, while $[0,1]^{6}$ is the unit cube in six-dimensional space.

