MTH135/STA104: Probability

Homework # 1 Due: Tuesday, Sep 6, 2005

Prof. Robert Wolpert

Reminder: On this and every homework, give (non-integer) numberical answers as fractions in lowest terms or as decimals to four significant digits—so $\pi = 3.142, 24/6 = 4$.

- 1. (after p.30, prob. 4) Let $\Omega = \{0, 1, 2\}$ be the outcome space in a model for rolling a (six-sided) die twice and counting the total number of 1's. Tell if each of the following events can be expressed as a subset of Ω ; if so, give the subset explicitly; if not, tell why:
 - a) Both rolls are 1's;
 - b) One roll is a 1, the other isn't;
 - c) At least one roll is a 1;
 - d) At least one roll is a 3;
 - e) The first roll is a 1.
- **2**. The events A and B have probabilities P[A] = 0.2 and P[B] = 0.4, while P[A B] = 0.1. Find:
 - a) $P[A^c] =$
 - b) $P[A \cup B] =$
 - c) $P[A \cup B^c] =$
 - d) $P[AB^c] =$
 - e) $P[A^c B^c] =$
- 3. Find the one-dimensional integrals below, as functions of $x \ge 0$:
 - a) $\int_0^x e^{-ct} dt$, for each real number $c \in \mathbb{R}$;
 - b) $\int_{-x}^{x} t^2 dt;$
 - c) $\int_0^x t^a dt$, for every number $a \in \mathbb{R}$

- Let $T = \{(x, y) : 0 < x, 0 < y, 0 < x + y < 1\}$ be the indicated triangle in the first quadrant.
 - Draw the region T; label the axes.
 - Evaluate the integral

$$\iint_T 1 \, dx \, dy$$

in two ways— as an iterated integral $\int \int dx dy$ (first dx, on the "inside," then dy on the "outside") and $\int \int \int dy dx$. Show your limits of integration clearly. Do you get the same answer both times?

c) Evaluate the integral

$$\iint_T x \, dx \, dy$$

in any way you like.

- Evaluate the limits below:
 - a) $\lim_{n\to\infty} \frac{3n+4}{2n-1}$
 - b) $\lim_{n\to\infty} \frac{n^2+n+7}{2n^2-1}$

 - c) $\lim_{n\to\infty} \frac{e^n}{n}$ d) $\lim_{n\to\infty} \frac{2n+1/n}{2n+1/n}$
 - e) $\lim_{n\to\infty} (\pi/3)^n$
 - f) $\lim_{n\to\infty} (1-2/n)^n$
- **6**. Find the sums, each with n terms, for each non-negative integer $n \in \mathbb{N}$:
 - a) $S_1 = \sum_{i=1}^n 3 = 3 + 3 + \dots + 3$
 - b) $S_2 = \sum_{i=1}^n i = 1 + 2 + 3 + \dots + n$
 - c) $S_3 = \sum_{i=1}^{n} 2^i = 2 + 4 + 8 + \dots + 2^n$

d) $S_4 = \sum_{i=1}^n 2^{-i} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + 2^{-n}$ Hint: Write the sum for S_2 twice, once forward and (just below that) once backward. Compare the sums S_3 and $2 \times S_3$, again writing out the terms for one above the other. Do something similar for S_4 .

- 7. Write as fractions in lowest terms
 - a) 0.45
 - b) 3/4 2/3
 - c) 1/99 1/101
- 8. Write as decimals to exactly four *significant* digits
 - a) 1/7
 - b) $\sqrt{200}$
 - c) $\sqrt{1/200}$
- 9. An experiment consists of testing six patients' reaction times before and after administering a drug that reproduces the effect of ingesting 1oz of ethanol. For each subject we record the difference D_i (before minus after) of reaction times, measured in milliseconds.

Which of the following could be an Outcome Space for this problem? Give a SHORT explanation for each answer, and for each give the number of elements $\#(\Omega)$. For a note on notation, see p.4 below.

- a) $\Omega = [0, 1]^6$, with outcomes $\omega = (D_1, D_2, ..., D_6)$;
- b) $\Omega = \mathbb{R}^6 = (-\infty, \infty)^6$, with outcomes $\omega = (D_1, D_2, ..., D_6)$;
- c) $\Omega = \{0, 1, 2, 3, 4, 5, 6\}$, the number of subjects whose reaction time became worse (*i.e.*, bigger);
 - d) $\Omega = \{1, 2, 3, 4, 5, 6\}$, one for each subject;
- 10. The (arithmetic) average of a set A of numbers is just their sum divided by how many there are,

$$avg(A) = \sum \{a : a \in A\} / \#(A)$$

Set $A = \{1, 2, 3\}$. In each of the following pairs, which is larger— or are they the same?

- a) $\operatorname{avg}(\{a^2 : a \in A\})$ or $\operatorname{avg}(A)^2$?
- b) $avg({2^a : a \in A}) \text{ or } 2^{avg(A)}?$
- c) $avg({2 \times a : a \in A}) \text{ or } 2 \times avg(A)$?
- d) $avg({2 + a : a \in A}) \text{ or } 2 + avg(A)?$

Note: In traditional mathematics notation, for any real numbers a < b, the set:

- [a, b] denotes the closed interval $\{x: a \leq x \leq b\}$;
- (a,b) denotes the open interval $\{x: a < x < b\};$
- $\{a,b\}$ denotes the finite set containing only a and b.

For any set S and integer $n \in \mathbb{N}$, the symbol " S^n " denotes the set of ordered n-tuples $(s_1, s_2, ..., s_n)$ with each $s_i \in S$ — for example, \mathbb{R}^3 is the set of three-tuples (x_1, x_2, x_3) of real numbers $x_i \in \mathbb{R} = (-\infty, \infty)$, a suitable set for indexing points in space, while $[0, 1]^6$ is the unit cube in six-dimensional space.