MTH135/STA104: Probability

Homework # 5 Due: Tuesday, Oct 4, 2005

Prof. Robert Wolpert

1. Let X_1 and X_2 be the numbers on two independent rolls of a fair die; set

$$Y_1 \equiv \min(X_1, X_2) \qquad Y_2 \equiv \max(X_1, X_2)$$

- a) Give the joint distribution of X_1 and X_2
- b) Give the distribution of Y_1
- c) Give the joint distribution of Y_1 and Y_2
- d) Give the distribution of $Z \equiv Y_2 Y_2$. What is its most likely value?
- 2. A fair coin is tossed three times; let X denote the number of heads on the first two tosses, Y the number of heads on the last two tosses.
 - a) Are X and Y independent? Prove it.
 - b) Give the distribution of $Z = X \cdot Y$.
- 3. Is it possible for two *independent* random variables X and Y (not necessarily with the same distributions) to satisfy P[X < Y] = 1? Why?
- **4**. For some constant c > 0 the random variable X takes the value X = j with probability $c \cdot j$ for $j \in \{1, 2, 3, 4\}$.
 - a) What is the probability that X is an even number?
- b) How large would you expect the sum to be of n independent observations $X_1,...,X_n$ from this distribution?
- c) What is the probability that n independent observations $X_1,...,X_n$ are all equal? Simplify as much as possible.

- 5. (from Prob 13, p. 160) A box contains 2n balls of n different colors, with 2 of each color. Balls are picked at random from the box with replacement until two balls of the same color have appeared. Let X be the number of draws made.
- a) Find the probability distribution for X— i.e., find P[X = x] for every x (hint: find P[X > x] first, for every integer x).
- b) Find the limit as $n \to \infty$ of the probability that it takes more than \sqrt{n} draws to find two of the same color, if the box contains n different colors—i.e., find $\lim_{n\to\infty} \mathsf{P}[X>\sqrt{n}]$ (Hint: use an exponential approximation for $\mathsf{P}[X>x]$).
- **6**. Let $X_1, X_2,..., X_n$ be a sequence of random variables. If each pair (X_i, X_j) are independent for $1 \le i < j \le n$, does it follow that $\{X_1, X_2,..., X_n\}$ are independent? Sketch a proof or counterexample.
- 7. Let X be drawn uniformly from the interval [0,1] and let Y be selected uniformly from the set $\{0,1,2\}$, with X and Y independent. Set Z=X+Y. Find the function $F(z)=\mathsf{P}[Z\leq z]$ for every number $-\infty < z < \infty$. (Hint: Consider the different possible values of Y separately)
- 8. Suppose $E[X^2] = 5$, $E[Y^2] = 10$, and $E[X \cdot Y] = 6$.
 - a) Find $E[(X Y)^2]$.
 - b) Find the number $t \in \mathbb{R}$ that minimizes $f(t) = \mathsf{E}[(X t Y)^2]$.
- **9**. A building has 10 floors above the basement. If 12 people get onto an elevator and if each picks a floor at random from $\{1, 2, ..., 10\}$ to get out, independently of the others,
 - a) At how many floors do you expect the elevator to stop?
- b) Let H be the highest floor the elevator reaches. Find the median m for H, *i.e.*, the number such that $\mathsf{P}[H < m] \leq \frac{1}{2} \leq \mathsf{P}[H \leq m]$.
- 10. Pitman's problem 20 on p.184 asks you to show that the distribution of any random variable X taking three values (he chooses $\{0,1,2\}$) is determined completely by the two "moments" $\mu_1 = \mathsf{E}[X]$ and $\mu_2 = \mathsf{E}[X^2]$, by finding formulas for $\mathsf{P}[X=x]$ in terms of μ_1 and μ_2 . Show that this would not be true for random variables taking (at least) four different values, by finding two random variables X and Y with the same first two moments but different distributions. Suggestion: Choose $\{\pm 1, \pm 2\}$ for your points and find distinct distributions with $\mu_1 = 0$.