MTH135/STA104: Probability

Homework \# 5 Due: Tuesday, Oct 4, 2005

Prof. Robert Wolpert

1. Let X_{1} and X_{2} be the numbers on two independent rolls of a fair die; set

$$
Y_{1} \equiv \min \left(X_{1}, X_{2}\right) \quad Y_{2} \equiv \max \left(X_{1}, X_{2}\right)
$$

a) Give the joint distribution of X_{1} and X_{2}
b) Give the distribution of Y_{1}
c) Give the joint distribution of Y_{1} and Y_{2}
d) Give the distribution of $Z \equiv Y_{2}-Y_{2}$. What is its most likely value?
2. A fair coin is tossed three times; let X denote the number of heads on the first two tosses, Y the number of heads on the last two tosses.
a) Are X and Y independent? Prove it.
b) Give the distribution of $Z=X \cdot Y$.
3. Is it possible for two independent random variables X and Y (not necessarily with the same distributions) to satisfy $\mathrm{P}[X<Y]=1$? Why?
4. For some constant $c>0$ the random variable X takes the value $X=j$ with probability $c \cdot j$ for $j \in\{1,2,3,4\}$.
a) What is the probability that X is an even number?
b) How large would you expect the sum to be of n independent observations X_{1}, \ldots, X_{n} from this distribution?
c) What is the probability that n independent observations X_{1}, \ldots, X_{n} are all equal? Simplify as much as possible.
5. (from Prob 13, p.160) A box contains $2 n$ balls of n different colors, with 2 of each color. Balls are picked at random from the box with replacement until two balls of the same color have appeared. Let X be the number of draws made.
a) Find the probability distribution for X - i.e., find $\mathrm{P}[X=x]$ for every x (hint: find $\mathrm{P}[X>x]$ first, for every integer x).
b) Find the limit as $n \rightarrow \infty$ of the probability that it takes more than \sqrt{n} draws to find two of the same color, if the box contains n different colorsi.e., find $\lim _{n \rightarrow \infty} \mathrm{P}[X>\sqrt{n}]$ (Hint: use an exponential approximation for $\mathrm{P}[X>x])$.
6. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a sequence of random variables. If each pair $\left(X_{i}, X_{j}\right)$ are independent for $1 \leq i<j \leq n$, does it follow that $\left\{X_{1}, X_{2}, \ldots\right.$, $\left.X_{n}\right\}$ are indepndent? Sketch a proof or counterexample.
7. Let X be drawn uniformly from the interval $[0,1]$ and let Y be selected uniformly from the set $\{0,1,2\}$, with X and Y independent. Set $Z=X+Y$. Find the function $F(z)=\mathrm{P}[Z \leq z]$ for every number $-\infty<z<\infty$. (Hint: Consider the different possible values of Y separately)
8. Suppose $\mathrm{E}\left[X^{2}\right]=5, \mathrm{E}\left[Y^{2}\right]=10$, and $\mathrm{E}[X \cdot Y]=6$.
a) Find $\mathrm{E}\left[(X-Y)^{2}\right]$.
b) Find the number $t \in \mathbb{R}$ that minimizes $f(t)=\mathrm{E}\left[(X-t Y)^{2}\right]$.
9. A building has 10 floors above the basement. If 12 people get onto an elevator and if each picks a floor at random from $\{1,2, \ldots, 10\}$ to get out, independently of the others,
a) At how many floors do you expect the elevator to stop?
b) Let H be the highest floor the elevator reaches. Find the median m for H, i.e., the number such that $\mathrm{P}[H<m] \leq \frac{1}{2} \leq \mathrm{P}[H \leq m]$.
10. Pitman's problem 20 on $p .184$ asks you to show that the distribution of any random variable X taking three values (he chooses $\{0,1,2\}$) is determined completely by the two "moments" $\mu_{1}=\mathrm{E}[X]$ and $\mu_{2}=\mathrm{E}\left[X^{2}\right]$, by finding formulas for $\mathrm{P}[X=x]$ in terms of μ_{1} and μ_{2}. Show that this would not be true for random variables taking (at least) four different values, by finding two random variables X and Y with the same first two moments but different distributions. Suggestion: Choose $\{ \pm 1, \pm 2\}$ for your points and find distinct distributions with $\mu_{1}=0$.

