MTH135/STA104: Probability

Homework \# 5 Due: Tuesday, Oct 4, 2005

Prof. Robert Wolpert

1. Let X_{1} and X_{2} be the numbers on two independent rolls of a fair die; set

$$
Y_{1} \equiv \min \left(X_{1}, X_{2}\right) \quad Y_{2} \equiv \max \left(X_{1}, X_{2}\right)
$$

a) Give the joint distribution of X_{1} and X_{2}

The thirty-six possibilities are all equally likely, so $\mathrm{P}\left[X_{1}=i, X_{2}=j\right]=\frac{1}{36}$ for $i, j \in\{1,2,3,4,5,6\}$.
b) Give the distribution of Y_{1}

Find the joint distribution (below) first; then sum the margins. The six possible values of Y_{1} have probabilities $11 / 36,9 / 36,7 / 36,5 / 36,3 / 36,1 / 36$, respectively, or $\mathrm{P}\left[Y_{1}=j\right]=(13-2 j) / 36$ for $j=1, \ldots, 6$.
c) Give the joint distribution of Y_{1} and Y_{2}

In a table,

	Y_{2}					
	1	2	3	4	5	6
1	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$
2	0	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$
$Y_{1} 3$	0	0	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$
4	0	0	0	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{18}$
5	0	0	0	0	$\frac{1}{36}$	$\frac{1}{18}$
6	0	0	0	0	0	$\frac{1}{36}$

d) Give the distribution of $Z \equiv Y_{2}-Y_{2}$. What is its most likely value?

There are six possible values, $0 . .5$, with probabilities $1 / 18,2 / 18=1 / 9$, $3 / 18=1 / 6,4 / 18=2 / 9,5 / 18$, and $6 / 36=1 / 6$, respectively. Evidently the most likely value is $\mathrm{P}[Z=4]=5 / 18 \approx 0.2778$.
2. A fair coin is tossed three times; let X denote the number of heads on the first two tosses, Y the number of heads on the last two tosses.
a) Are X and Y independent? Prove it.

No; for example, $\mathrm{P}[X=0]=\mathrm{P}[Y=0]=\frac{1}{4}$, while $\mathrm{P}[X=0, Y=0]=\frac{1}{8} \neq$ $\left(\frac{1}{4}\right)^{2}$.
b) Give the distribution of $Z=X \cdot Y$.

The four possible values of Z have probabilities $\mathrm{P}[Z=0]=\frac{3}{8}, \mathrm{P}[Z=$ $1]=\frac{1}{4}, \mathrm{P}[Z=2]=\frac{1}{4}, \mathrm{P}[Z=4]=\frac{1}{8}$.
3. Is it possible for two independent random variables X and Y (not necessarily with the same distributions) to satisfy $\mathrm{P}[X<Y]=1$? Why?

Sure. For example, let $X \in\{0,1\}$ be equally-likely and let $Y \in\{4,5\}$ be equally-likely. Even simpler, let $X=0$ and $Y=1$ with probability one!
4. For some constant $c>0$ the random variable X takes the value $X=j$ with probability $c \cdot j$ for $j \in\{1,2,3,4\}$.
a) What is the probability that X is an even number?

Evidently $c=1 / 10$, so $\mathrm{P}[X \in\{2,4\}]=0.20+0.40=0.60$.
b) How large would you expect the sum to be of n independent observations X_{1}, \ldots, X_{n} from this distribution?

On average each observation will be $\mathrm{E}\left[X_{j}\right]=\sum x \mathrm{P}[X=x]=1 \cdot \frac{1}{10}+2$. $\frac{2}{10}+3 \cdot \frac{3}{10}+4 \cdot \frac{4}{10}=30 / 10=3$, so the sum of 100 repetitions should be about $3 n$.
c) What is the probability that n independent observations X_{1}, \ldots, X_{n} are all equal? Simplify as much as possible.

$$
\begin{aligned}
\sum_{j=1}^{4} \mathrm{P}\left[X_{i}=j \text { for all } 1 \leq i \leq n\right] & =(1 / 10)^{n}+(2 / 10)^{n}+(3 / 10)^{n}+(4 / 10)^{n} \\
& =\left(1+2^{n}+3^{n}+4^{n}\right) / 10^{n}
\end{aligned}
$$

5. (from Prob 13, p. 160) A box contains $2 n$ balls of n different colors, with 2 of each color. Balls are picked at random from the box with replacement until two balls of the same color have appeared. Let X be the number of draws made.
a) Find the probability distribution for X - i.e., find $\mathrm{P}[X=x]$ for every x (hint: find $\mathrm{P}[X>x]$ first, for every integer x).

$$
\begin{aligned}
\mathrm{P}[X>x] & =1 \text { for } x \leq 1 \text { while, for integers } x \geq 2, \\
\mathrm{P}[X>x] & =\overbrace{\frac{2 n}{2 n} \times \frac{2 n-2}{2 n} \times \cdots \times \frac{2 n+2-2 x}{2 n}}^{x \text { terms }}
\end{aligned}=\prod_{k=0}^{x-1}(1-k / n) .
$$

Thus, for $x \in \mathbb{N}$,

$$
\mathrm{P}[X=x]=\frac{x-1}{n} \prod_{k=0}^{x-2}(1-k / n)
$$

b) Find the limit as $n \rightarrow \infty$ of the probability that it takes more than \sqrt{n} draws to find two of the same color, if the box contains n different colorsi.e., find $\lim _{n \rightarrow \infty} \mathrm{P}[X>\sqrt{n}]$ (Hint: use an exponential approximation for $\mathrm{P}[X>x])$.

$$
\mathrm{P}[X>x]=\prod_{k=0}^{x-1}(1-k / n) \approx \prod_{k=0}^{x-1} e^{-k / n}=e^{-\frac{1}{n} \sum_{k<x} k} \approx e^{-x^{2} / 2 n}
$$

so $\mathrm{P}[X>\sqrt{n}] \approx e^{-1 / 2} \approx 0.6065$.
6. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a sequence of random variables. If each pair $\left(X_{i}, X_{j}\right)$ are independent for $1 \leq i<j \leq n$, does it follow that $\left\{X_{1}, X_{2}, \ldots\right.$, $\left.X_{n}\right\}$ are indepndent? Sketch a proof or counterexample.

No; toss two fair coins and let X_{1} be the number of heads on the first toss, X_{2} the number of heads on the second toss, and let X_{3} be one if $X_{1}=X_{2}$ and zero otherwise.
7. Let X be drawn uniformly from the interval $[0,1]$ and let Y be selected uniformly from the set $\{0,1,2\}$, with X and Y independent. Set $Z=X+Y$. Find the function $F(z)=\mathrm{P}[Z \leq z]$ for every number $-\infty<z<\infty$. (Hint: Consider the different possible values of Y separately)
8. Suppose $\mathrm{E}\left[X^{2}\right]=5, \mathrm{E}\left[Y^{2}\right]=10$, and $\mathrm{E}[X \cdot Y]=6$.
a) Find $\mathrm{E}\left[(X-Y)^{2}\right]$.

$$
\mathrm{E}\left[(X-Y)^{2}\right]=\mathrm{E}\left[X^{2}\right]-2 \mathrm{E}[X \cdot Y]+\mathrm{E}\left[Y^{2}\right]=5-12+10=3
$$

b) Find the number $t \in \mathbb{R}$ that minimizes $f(t)=\mathrm{E}\left[(X-t Y)^{2}\right]$.

$$
f(t) \mathrm{E}\left[(X-t Y)^{2}\right]=\mathrm{E}\left[X^{2}\right]-2 t \mathrm{E}[X \cdot Y]+t^{2} \mathrm{E}\left[Y^{2}\right]=5-12 t+10 t^{2},
$$

a quadratic function with minimum where $0=f^{\prime}(t)=20 t-12$, or $t=0.60$.
9. A building has 10 floors above the basement. If 12 people get onto an elevator and if each picks a floor at random from $\{1,2, \ldots, 10\}$ to get out, independently of the others,
a) At how many floors do you expect the elevator to stop?

Let $I_{k}=1$ if the elevator stops at floor k for $1 \leq k \leq 10$; the expectation of I_{k} is just the probability that at least one of the twelve people stop there, one minus the probability that none stop, $\mathrm{E}\left[I_{k}\right]=1-(9 / 10)^{12} \approx 0.71757$. The number of floors at which the elevator stops is $S=\sum_{k=1}^{10} I_{k}$, with expectation $\mathrm{E}[S]=10 \times\left[1-(9 / 10)^{12}\right] \approx 7.176$.
b) Let H be the highest floor the elevator reaches. Find the median m for H, i.e., the number such that $\mathrm{P}[H<m] \leq \frac{1}{2} \leq \mathrm{P}[H \leq m]$.

The probability that $[H \leq h]$ is $(h / 10)^{12}$, so the median will be the smallest $h \in\{1, \ldots, 10\}$ with $(h / 10)^{12} \geq \frac{1}{2}$, i.e., $h \geq 10(1 / 2)^{1 / 12}=9.439$, so $m=10$. The probability the top floor is reached is $1-(9 / 10)^{12}=0.7176$, well above 50%.
10. Pitman's problem 20 on $p .184$ asks you to show that the distribution of any random variable X taking three values (he chooses $\{0,1,2\}$) is determined completely by the two "moments" $\mu_{1}=\mathrm{E}[X]$ and $\mu_{2}=\mathrm{E}\left[X^{2}\right]$, by finding formulas for $\mathrm{P}[X=x]$ in terms of μ_{1} and μ_{2}. Show that this would not be true for random variables taking (at least) four different values, by finding two random variables X and Y with the same first two moments but different distributions. Suggestion: Choose $\{ \pm 1, \pm 2\}$ for your points and find distinct distributions with $\mu_{1}=0$.

Let $\mathrm{P}[X=-2]=\mathrm{P}[Y=+2]=1 / 3, \mathrm{P}[X=+1]=\mathrm{P}[Y=-1]=2 / 3 ;$ then each has $\mu_{1}=0$ and $\mu_{2}=2$, but the distributions differ.

