MTH135/STA104: Probability

Homework # 5 Due: Tuesday, Oct 4, 2005

Prof. Robert Wolpert

1. Let X_1 and X_2 be the numbers on two independent rolls of a fair die; set

$$Y_1 \equiv \min(X_1, X_2) \qquad Y_2 \equiv \max(X_1, X_2)$$

a) Give the joint distribution of X_1 and X_2

The thirty-six possibilities are all equally likely, so $P[X_1 = i, X_2 = j] = \frac{1}{36}$ for $i, j \in \{1, 2, 3, 4, 5, 6\}$.

b) Give the distribution of Y_1

Find the joint distribution (below) first; then sum the margins. The six possible values of Y_1 have probabilities 11/36, 9/36, 7/36, 5/36, 3/36, 1/36, respectively, or $\mathsf{P}[Y_1=j]=(13-2j)/36$ for j=1,...,6.

c) Give the joint distribution of Y_1 and Y_2 In a table,

		Y_2					
		1	2	3	4	5	6
	1	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$
	2	0	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$
Y_1	3	0	0	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$
	4	0	0	0	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{18}$
	5	0	0	0	0	$\frac{1}{36}$	$\frac{1}{18}$
	6	0	0	0	0	0	$\frac{1}{36}$

d) Give the distribution of $Z \equiv Y_2 - Y_2$. What is its most likely value?

There are six possible values, 0..5, with probabilities 1/18, 2/18 = 1/9, 3/18 = 1/6, 4/18 = 2/9, 5/18, and 6/36 = 1/6, respectively. Evidently the most likely value is $P[Z = 4] = 5/18 \approx 0.2778$.

- 2. A fair coin is tossed three times; let X denote the number of heads on the first two tosses, Y the number of heads on the last two tosses.
 - a) Are X and Y independent? Prove it.

No; for example, $P[X = 0] = P[Y = 0] = \frac{1}{4}$, while $P[X = 0, Y = 0] = \frac{1}{8} \neq (\frac{1}{4})^2$.

b) Give the distribution of $Z = X \cdot Y$.

The four possible values of Z have probabilities $P[Z=0]=\frac{3}{8}$, $P[Z=1]=\frac{1}{4}$, $P[Z=2]=\frac{1}{4}$, $P[Z=4]=\frac{1}{8}$.

3. Is it possible for two *independent* random variables X and Y (not necessarily with the same distributions) to satisfy P[X < Y] = 1? Why?

Sure. For example, let $X \in \{0, 1\}$ be equally-likely and let $Y \in \{4, 5\}$ be equally-likely. Even simpler, let X = 0 and Y = 1 with probability one!

- **4**. For some constant c > 0 the random variable X takes the value X = j with probability $c \cdot j$ for $j \in \{1, 2, 3, 4\}$.
 - a) What is the probability that X is an even number? Evidently c = 1/10, so $P[X \in \{2, 4\}] = 0.20 + 0.40 = 0.60$.
- b) How large would you expect the sum to be of n independent observations $X_1,...,X_n$ from this distribution?

On average each observation will be $\mathsf{E}[X_j] = \sum x \, \mathsf{P}[X=x] = 1 \cdot \frac{1}{10} + 2 \cdot \frac{2}{10} + 3 \cdot \frac{3}{10} + 4 \cdot \frac{4}{10} = 30/10 = 3$, so the sum of 100 repetitions should be about $3 \, n$.

c) What is the probability that n independent observations $X_1,...,X_n$ are all equal? Simplify as much as possible.

$$\sum_{j=1}^{4} P[X_i = j \text{ for all } 1 \le i \le n] = (1/10)^n + (2/10)^n + (3/10)^n + (4/10)^n$$
$$= (1+2^n+3^n+4^n)/10^n$$

- 5. (from Prob 13, p. 160) A box contains 2n balls of n different colors, with 2 of each color. Balls are picked at random from the box with replacement until two balls of the same color have appeared. Let X be the number of draws made.
- a) Find the probability distribution for X— i.e., find $\mathsf{P}[X=x]$ for every x (hint: find $\mathsf{P}[X>x]$ first, for every integer x).

$$\mathsf{P}[X > x] = 1 \text{ for } x \le 1 \text{ while, for integers } x \ge 2,$$

$$\mathsf{P}[X > x] = \underbrace{\frac{2n}{2n} \times \frac{2n-2}{2n} \times \cdots \times \frac{2n+2-2x}{2n}}_{x \text{ terms}} = \prod_{k=0}^{x-1} (1-k/n)$$
Thus, for $x \in \mathbb{N}$,
$$\mathsf{P}[X = x] = \underbrace{\frac{x-1}{n} \prod_{k=0}^{x-2} (1-k/n)}_{k=0}$$

b) Find the limit as $n \to \infty$ of the probability that it takes more than \sqrt{n} draws to find two of the same color, if the box contains n different colors—i.e., find $\lim_{n\to\infty} \mathsf{P}[X>\sqrt{n}]$ (Hint: use an exponential approximation for $\mathsf{P}[X>x]$).

$$P[X > x] = \prod_{k=0}^{x-1} (1 - k/n) \approx \prod_{k=0}^{x-1} e^{-k/n} = e^{-\frac{1}{n} \sum_{k < x} k} \approx e^{-x^2/2n},$$

so
$$P[X > \sqrt{n}] \approx e^{-1/2} \approx 0.6065$$
.

6. Let $X_1, X_2,..., X_n$ be a sequence of random variables. If each pair (X_i, X_j) are independent for $1 \le i < j \le n$, does it follow that $\{X_1, X_2,..., X_n\}$ are independent? Sketch a proof or counterexample.

No; toss two fair coins and let X_1 be the number of heads on the first toss, X_2 the number of heads on the second toss, and let X_3 be one if $X_1 = X_2$ and zero otherwise.

7. Let X be drawn uniformly from the interval [0,1] and let Y be selected uniformly from the set $\{0,1,2\}$, with X and Y independent. Set Z=X+Y. Find the function $F(z)=\mathsf{P}[Z\leq z]$ for every number $-\infty < z < \infty$. (Hint: Consider the different possible values of Y separately)

- 8. Suppose $E[X^2] = 5$, $E[Y^2] = 10$, and $E[X \cdot Y] = 6$.
 - a) Find $E[(X-Y)^2]$.

$$\mathsf{E}[(X-Y)^2] = \mathsf{E}[X^2] - 2\mathsf{E}[X\cdot Y] + \mathsf{E}[Y^2] = 5 - 12 + 10 = 3$$

b) Find the number $t \in \mathbb{R}$ that minimizes $f(t) = \mathsf{E}[(X - tY)^2]$.

$$f(t)\mathsf{E}[(X-t\,Y)^2] = \mathsf{E}[X^2] - 2\,t\,\mathsf{E}[X\cdot Y] + t^2\mathsf{E}[Y^2] = 5 - 12\,t + 10t^2,$$
 a quadratic function with minimum where $0 = f'(t) = 20\,t - 12$, or $t = 0.60$.

- **9**. A building has 10 floors above the basement. If 12 people get onto an elevator and if each picks a floor at random from $\{1, 2, ..., 10\}$ to get out, independently of the others,
 - a) At how many floors do you expect the elevator to stop?

Let $I_k=1$ if the elevator stops at floor k for $1 \le k \le 10$; the expectation of I_k is just the probability that at least one of the twelve people stop there, one minus the probability that none stop, $\mathsf{E}[I_k]=1-(9/10)^{12}\approx 0.71757$. The number of floors at which the elevator stops is $S=\sum_{k=1}^{10}I_k$, with expectation $\mathsf{E}[S]=10\times[1-(9/10)^{12}]\approx 7.176$.

b) Let H be the highest floor the elevator reaches. Find the median m for H, *i.e.*, the number such that $P[H < m] \le \frac{1}{2} \le P[H \le m]$.

The probability that $[H \le h]$ is $(h/10)^{12}$, so the median will be the smallest $h \in \{1, ..., 10\}$ with $(h/10)^{12} \ge \frac{1}{2}$, *i.e.*, $h \ge 10(1/2)^{1/12} = 9.439$, so m = 10. The probability the top floor is reached is $1 - (9/10)^{12} = 0.7176$, well above 50%.

10. Pitman's problem 20 on p. 184 asks you to show that the distribution of any random variable X taking three values (he chooses $\{0,1,2\}$) is determined completely by the two "moments" $\mu_1 = \mathsf{E}[X]$ and $\mu_2 = \mathsf{E}[X^2]$, by finding formulas for $\mathsf{P}[X=x]$ in terms of μ_1 and μ_2 . Show that this would not be true for random variables taking (at least) four different values, by finding two random variables X and Y with the same first two moments but different distributions. Suggestion: Choose $\{\pm 1, \pm 2\}$ for your points and find distinct distributions with $\mu_1 = 0$.

Let P[X = -2] = P[Y = +2] = 1/3, P[X = +1] = P[Y = -1] = 2/3; then each has $\mu_1 = 0$ and $\mu_2 = 2$, but the distributions differ.