STA 104 Solutions

Homework 6

Due Oct 13, 2005

§ 3.2

Problem 19, p. 184

Denote R, B, W and G as the events of choosing a red, blue, white and green ticket respectively, then

$$
r=\mathrm{P}[R]=\frac{2}{7}, \quad b=\mathrm{P}[B]=\frac{1}{7}, \quad w=\mathrm{P}[W]=\frac{1}{7}, \quad g=\mathrm{P}[G]=\frac{3}{7}
$$

a) Since there are at most 4 different colors,

$$
\begin{aligned}
\mathrm{P}[X \geq 4]=\mathrm{P}[X=4] & =\frac{5!}{2!1!1!1!} \times\left(r^{2} b w g+r b^{2} w g+r b w^{2} g+r b w g^{2}\right) \\
& =3!\times\binom{ 5}{2} \times r b w g(r+b+w+g) \\
& =0.1499
\end{aligned}
$$

b) Suppose I_{R}, I_{B}, I_{W} and I_{G} are indicate functions, then

$$
\begin{aligned}
\mathrm{E}[X] & =\mathrm{E}\left[I_{R}+I_{B}+I_{W}+I_{G}\right]=\mathrm{E}\left[I_{R}\right]+\mathrm{E}\left[I_{B}\right]+\mathrm{E}\left[I_{W}\right]+\mathrm{E}\left[I_{G}\right] \\
& =\mathrm{P}\left[I_{R}\right]+\mathrm{P}\left[I_{B}\right]+\mathrm{P}\left[I_{W}\right]+\mathrm{P}\left[I_{G}\right] \\
& =\left(1-(1-r)^{5}\right)+\left(1-(1-b)^{5}\right)+\left(1-(1-w)^{5}\right)+\left(1-(1-g)^{5}\right) \\
& =\left(1-\left(\frac{5}{7}\right)^{5}\right)+2 \times\left(1-\left(\frac{6}{7}\right)^{5}\right)+\left(1-\left(\frac{4}{7}\right)^{5}\right) \\
& =2.8278
\end{aligned}
$$

Problem 20, p. 184

Suppose $\mathrm{P}[X=k]=p_{k}, k=0,1$ and 2 . Then we have following equations,

$$
\left\{\begin{aligned}
\mathrm{E}[1] & =1 \times p_{0}+1 \times p_{1}+1 \times p_{2}= & 1 \\
\mathrm{E}[X] & =0 \times p_{0}+1 \times p_{1}+2 \times p_{2}= & \mu_{1} \\
\mathrm{E}[X] & =0 \times p_{0}+1 \times p_{1}+4 \times p_{2}= & \mu_{2}
\end{aligned}\right.
$$

Since the determinant of the coefficients in this system of linear equation is not zero, the distribution of X is determined. Solve it, we have

$$
\left\{\begin{array}{rrrr}
p_{0}= & 1- & \frac{3}{2} \mu_{1}+ & \frac{1}{2} \mu_{2} \\
p_{1}= & & 2 \mu_{1}- & \mu_{2} \\
p_{2}= & & -\frac{1}{2} \mu_{1}+ & \frac{1}{2} \mu_{2}
\end{array}\right.
$$

§ 3.3

Problem 2, p. 202
Y is the number of heads obtained in tossing a fair coin three times, so

$$
\mathrm{P}[Y=k]=\binom{3}{k}\left(\frac{1}{2}\right)^{3} \quad k=0,1,2,3
$$

Then,

$$
\begin{aligned}
\mathrm{E}\left[Y^{2}\right] & =\sum_{k=0}^{3} k^{2} \mathrm{P}[Y=k] \\
& =0 \times \frac{1}{8}+1 \times \frac{3}{8}+4 \times \frac{3}{8}+9 \times \frac{1}{8} \\
& =3 \\
\mathrm{E}\left[Y^{4}\right] & =\sum_{k=0}^{3} k^{4} \mathrm{P}[Y=k] \\
& =0 \times \frac{1}{8}+1 \times \frac{3}{8}+16 \times \frac{3}{8}+81 \times \frac{1}{8} \\
& =16.5
\end{aligned}
$$

So

$$
\operatorname{Var}\left[Y^{2}\right]=\mathrm{E}\left[Y^{4}\right]-\left(\mathrm{E}\left[Y^{2}\right]\right)^{2}=16.5-3^{2}=7.5
$$

Problem 12, p. 203
a) Since $\mu=10$ and $\sigma=5$, apply Chebychev's inequality,

$$
\mathrm{P}[X \geq 20]=\mathrm{P}[X-\mu \geq 2 \sigma] \leq \mathrm{P}[|X-\mu| \geq 2 \sigma] \leq 1 / 2^{2}=0.25
$$

b) X cannot be binomial. Otherwise, suppose $X \sim \operatorname{Bi}(n, p)$, then $\mu=n p=$ 10 , and $\sigma=\sqrt{n p q}=5$, hence we have $q=2.5>1$, which is impossible.

Problem 14, p. 203

Suppose X is the average family income, it is a non-negative random variable.
a) Apply Markov's Inequality,

$$
\mathrm{P}[X>50000] \leq \frac{\mathrm{E}[X]}{50000}=\frac{10000}{50000}=0.2
$$

b) Apply Chebyshev's Inequality,

$$
\mathrm{P}[X>50000]=\mathrm{P}[X-10000>5 \times 8000] \leq \mathrm{P}[|X-10000|>5 \times 8000] \leq \frac{1}{5^{2}}=0.04
$$

Problem 17, p. 204

Calculate the mean and standard deviation for X,

$$
\begin{gathered}
\mu=\mathrm{E}[X]=-1 \times \frac{1}{4}+0 \times \frac{1}{4}+1 \times \frac{1}{2}=-\frac{1}{4}=0.25 \\
\operatorname{Var}[X]=\mathrm{E}\left[X^{2}\right]-(\mathrm{E} X)^{2}=1 \times \frac{1}{4}+0 \times \frac{1}{4}+1 \times \frac{1}{2}-\left(-\frac{1}{4}\right)^{2}=\frac{11}{16}=0.6875 \\
\sigma=\sqrt{\operatorname{Var}[X]}=\frac{\sqrt{11}}{4}=0.8292
\end{gathered}
$$

Approximate the sum S_{25} as a normal distribution, with mean $\mathrm{E}\left[S_{25}\right]=25 \mu=$ 6.25 , and standard deviation $\mathrm{SD}\left(S_{25}\right)=5 \sigma=4.1458$
a)

$$
\mathrm{P}[S<0] \approx \Phi\left(\frac{-0.5-\mathrm{E}\left[S_{25}\right]}{\mathrm{SD}\left(S_{25}\right)}\right)=\Phi(-1.6282)=0.0517
$$

b)

$$
\mathrm{P}[S=0] \approx \Phi\left(\frac{0.5-\mathrm{E}\left[S_{25}\right]}{\mathrm{SD}\left(S_{25}\right)}\right)-\Phi\left(\frac{-0.5-\mathrm{E}\left[S_{25}\right]}{\mathrm{SD}\left(S_{25}\right)}\right)=\Phi(-1.3869)-\Phi(1.6282)=0.0310
$$

c)

$$
\mathrm{P}[S>0] \approx 1-\Phi\left(\frac{0.5-\mathrm{E}\left[S_{25}\right]}{\mathrm{SD}\left(S_{25}\right)}\right)=1-\Phi(-1.3869)=0.9173
$$

Problem 18, p. 204

Suppose X is winning money, then $p=\mathrm{P}[X=6]=\frac{5}{38}, q=\mathrm{P}[X=-1]=\frac{33}{38}$.
Calculate the mean and variance

$$
\begin{aligned}
\mu=\mathrm{E}[X] & =6 p-q=-\frac{3}{38}=-0.0789 \\
\mathrm{E}\left[X^{2}\right] & =36 p+q=5.6053 \\
\operatorname{Var}[X] & =\mathrm{E}\left[X^{2}\right]-\mathrm{E}[X]^{2}=5.5999 \\
\sigma=\mathrm{SD}(X) & =\sqrt{\operatorname{Var}[X]}=2.3662
\end{aligned}
$$

Let $S=X_{1}+X_{2}+\cdots+X_{300}$, then S has an approximately Normal distribution by Central Limit Theorem

$$
\mathrm{P}[S>0]=\mathrm{P}\left[\frac{S-300 \mu}{\sqrt{300} \sigma}>\frac{0-300 \mu}{\sqrt{300} \sigma}\right]=1-\Phi\left(\frac{23.6842}{40.9843}\right)=0.2816
$$

Problem 24, p. 205

Denote by X_{k} the number obtained from the $k^{\text {th }}$ draw, then

$$
\mathrm{P}\left[X_{k}=0\right]=1 / 4, \quad \mathrm{P}\left[X_{k}=1\right]=1 / 2, \quad \mathrm{P}\left[X_{k}=2\right]=1 / 4, \quad S_{n}=\sum_{k=1}^{n} X_{k}
$$

a) Since all the $\left\{X_{i}\right\}$ are independent and indentically distributed,

$$
\begin{aligned}
\mathrm{P}\left[S_{2}=k\right]=\mathrm{P}\left[X_{1}+X_{2}=k\right] & =\sum_{i=0}^{2} \mathrm{P}\left[X_{1}=i, X_{2}=k-i\right] \\
& =\sum_{i=0}^{2} \mathrm{P}\left[X_{1}=i\right] \mathrm{P}\left[X_{2}=k-i\right]
\end{aligned}
$$

Then it is easy to get the exact distribution of S_{2},

S_{2}	0	1	2	3	4
$\mathrm{P}\left[S_{2}\right]$	$1 / 16$	$1 / 4$	$3 / 8$	$1 / 4$	$1 / 16$

b) Calculate $\mu=\mathrm{E}\left[X_{k}\right]=1$, and $\sigma=\mathrm{SD}(X)=\sqrt{0.5}=0.7071$.

$$
\mathrm{P}\left[S_{50}=50\right] \approx \Phi\left(\frac{50+0.5-50}{\sqrt{50 \times 0.5}}\right)-\Phi\left(\frac{50-0.5-50}{\sqrt{50 \times 0.5}}\right)=\Phi(0.100)-\Phi(-0.100)=0.0796
$$

c) We shall prove that $\mathrm{P}\left[S_{n}=k\right]=\binom{2 n}{k} / 2^{2 n}$ by mathematical induction.

For $n=0$ this statement asserts that $\mathrm{P}\left[S_{0}=0\right]=1$, trivial but true.
Suppose the statement holds for all $m \leq n$ for some $n \geq 0$; then

$$
\begin{aligned}
\mathrm{P}\left[S_{n+1}=k\right] & =\mathrm{P}\left[S_{n}=k, X_{n+1}=0\right]+\mathrm{P}\left[S_{n}=k-1, X_{n+1}=1\right]+\mathrm{P}\left[S_{n}=k-2, X_{n+1}=2\right] \\
& =\mathrm{P}\left[S_{n}=k\right] \mathrm{P}\left[X_{n+1}=0\right]+\mathrm{P}\left[S_{n}=k-1\right] \mathrm{P}\left[X_{n+1}=1\right]+\mathrm{P}\left[S_{n}=k-2\right] \mathrm{P}\left[X_{n+1}=2\right] \\
& =\frac{1}{2^{2 n}}\left[\binom{2 n}{k} \frac{1}{4}+\binom{2 n}{k-1} \frac{1}{2}+\binom{2 n}{k-2} \frac{1}{4}\right] \\
& =\frac{1}{2^{2 n+2}}\binom{2 n+2}{k}\left[\frac{(2 n+2-k)(2 n+1-k)}{(2 n+2)(2 n+1)}+\frac{k(2 n+2-k) \times 2}{(2 n+2)(2 n+1)}+\frac{k(k-1)}{(2 n+2)(2 n+1)}\right] \\
& =\frac{1}{2^{2 n+2}}\binom{2 n}{k}
\end{aligned}
$$

By Mathematical Induction, the statement is true for every natural number $n \geq 0$. Alternately, we can recognize the distribution of $X_{i} \sim \operatorname{Bi}\left(2, \frac{1}{2}\right)$ and hence $S_{n} \sim \operatorname{Bi}\left(2 n, \frac{1}{2}\right)$, proving the formula.

§ 3.4

Problem 5, p. 218

Denote $q_{i} \equiv\left(1-p_{i}\right)$ for $i=1,2,3$.
a) The event It takes Mary more than n tosses to get a head occurs if and only if Mary's first n tosses are all tails, so the probability is $q_{2}{ }^{n}$.
b) Each of them must toss only tails in the first n tosses; by independence, the probability is $q_{1}{ }^{n} q_{2}{ }^{n} q_{3}{ }^{n}=\left(q_{1} q_{2} q_{3}\right)^{n}$.
d) The event The first person get a head has to toss exactly n times occurs if and only if all three toss only tails for the first $n-1$ tosses, but at least one of them tosses a head on the $n^{\text {th }}$ toss; its probability is

$$
\left(q_{1} q_{2} q_{3}\right)^{n-1}\left(1-q_{1} q_{2} q_{3}\right)=\left(q_{1} q_{2} q_{3}\right)^{n-1}-\left(q_{1} q_{2} q_{3}\right)^{n}
$$

e) One way to compute the probability of the event the first head is tossed by Mary is to sum up over the possible numbers of tosses n needed for the first toss to occur; we get

P [Mary tosses the first head $]=\sum_{n=1}^{\infty} \mathrm{P}\left[\right.$ No head before $n^{\text {th }}$ toss $] \mathrm{P}\left[\right.$ Mary head on $n^{\text {th }}$ toss $]$
$=\sum_{n=1}^{\infty}\left(q_{1} q_{2} q_{3}\right)^{n-1} p_{2}$
$=\frac{p_{2}}{1-q_{1} q_{2} q_{3}}$

Problem 10, p. 219

a) $\mathrm{P}[X<2]=0$, so when $k \geq 2$, if $X=k$, there are only two possibilities, $k-1$ success followed by a failure, or $k-1$ failures followed by a success. Let $q=1-p$, we have

$$
\mathrm{P}[X=k]=p^{k-1} q+q^{k-1} p, \quad k \geq 2
$$

b)

$$
\begin{aligned}
\mathrm{E}[X] & =\sum_{k=2}^{\infty} k \mathrm{P}[X=k] \\
& =\sum_{k=2}^{\infty} k\left[p q^{k-1}+q p^{k-1}\right] \\
& =\left(\frac{1}{p}-p\right)+\left(\frac{1}{q}-q\right) \\
& =\frac{1}{p q}-1
\end{aligned}
$$

c)

$$
\begin{aligned}
\mathrm{E}\left[X^{2}\right] & =\sum_{k=2}^{\infty} k^{2} \mathrm{P}[X=k] \\
& =\sum_{k=2}^{\infty} k^{2}\left[p q^{k-1}+q p^{k-1}\right] \\
& =\left(\frac{1+q}{p^{2}}-p\right)+\left(\frac{1+p}{q^{2}}-q\right) \\
& =\frac{p^{2}+q^{2}+p^{3}+q^{3}}{p^{2} q^{2}}-1 \\
& =\frac{2}{p^{2} q^{2}}-\frac{5}{p q}-1 \\
\operatorname{Var}[X] & =\mathrm{E}\left[X^{2}\right]-\mathrm{E}[X]^{2} \\
& =\left(\frac{2}{p^{2} q^{2}}-\frac{5}{p q}-1\right)-\left(\frac{1}{p q}-1\right)^{2} \\
& =\frac{1}{p^{2} q^{2}}-\frac{3}{p q}-2
\end{aligned}
$$

