MTH135/STA104: Probability

Homework # 7

Due: Tuesday, Nov 1, 2005

Prof. Robert Wolpert

1. For some number c > 0 the random variable X has a continuous probability distribution with density function

$$f(x) = c x, \qquad 0 < x < 4$$

(so f(x) = 0 for $x \notin (0,4)$); thus for any interval (a,b),

$$P[a < X \le b] = \int_a^b f(x) \, dx$$

Please answer the following questions about X and its density function f(x):

- a) Find the value of c > 0: c =
- b) Find the indicated probabilities:
- $P[-2 < X \le 2] =$
- $P[2 < X \le 5] =$
- P[|X-2| > 1] =

 ${\bf 2}.$ The life-times (in years) of cathode-ray tubes (CRTs) are random variables T that satisfy

$$P[T > t] = \frac{100}{t^2}, \qquad t > 10$$

for every t > 10. Please answer the following questions:

a) The equation above doesn't mention t<10, but it does include all the information needed to determine it. Find

$$P[T \le 5] = \underline{\hspace{1cm}}$$

b) Find the pdf f(t) for T; be careful to give it correctly at every $t \in \mathbb{R}$.

$$f(t) =$$

c) Evaluate the expected value of T:

$$\mathsf{E}[T] = \underline{\hspace{1cm}}$$

d) Find the conditional probability of failure in the next year for a working CRT that is now t years old for each $t \ge 10$:

$$\mathsf{P}[T \le t+1 \mid T > t] = \underline{\hspace{2cm}}$$

Which is more likely to last another year, a 10-year old CRT or a 20-year old CRT?

e) Find the (instantaneous) hazard,

$$h(t) =$$

Does it increase, decrease, or stay constant?

3. In our fishing example we found that the number of fish caught in t hours, X_t , had a Poisson probability distribution with mass function

$$P[X_t = x] = \frac{(\lambda t)^x}{x!} e^{-\lambda t}, \qquad x = 0, 1, 2, \dots$$

with mean $\mu = \lambda t$, if we catch λ fish per hour on average and if the numbers of fish caught in disjoint time intervals are independent.

Find the probability density function $f_k(t)$ for T_k , the time at which the k^{th} fish is caught. Hint: Express the *event* $T_k \leq t$ in terms of X_t and use the Poisson probabilities above. Half-credit for the case k=1 of the first fish caught.

$$f_k(t) =$$

4. If X is a positive random variable with pdf f(x) and CDF F(x), so

$$F(x) = P[X \le x]$$
= 0, $x < 0$

$$f(x) = F'(x)$$
= 0, $x < 0$

and if $Y \equiv \sqrt{X}$, find the CDF $G(y) = \Pr[Y \leq y]$ and pdf g(y) = G'(y) in terms of f(x) and F(x).

- **5**. For each question below, give an example or a brief explanation of why none is possible:
- a) If X has a continuous distribution, can a function Y = g(X) possibly have a discrete distribution with P[Y = y] > 0 for some y?
- b) If X has a discrete distribution with finitely-many or countably-many possible values $\{x_j\}$, can a function Y = g(X) possibly have a continuous distribution with density function g(y), so $P[a < Y \le b] = \int_a^b g(y) dy$ for all a < b?
- c) Is it possible for the density function f(x) for some random variable X to satisfy f(x) > 1 at any point x?
- d) Is it possible for a density function f(x) to have a strictly positive lower bound on the positive half-line, *i.e.*, to satisfy $f(x) \ge \epsilon$ for every $x \in (0, \infty)$, for some fixed positive number $\epsilon > 0$?

- e) Is it possible for the cumulative distribution $F[x] = P[X \le x]$ to be strictly increasing (i.e., satisfy F(a) < F(b) for every a < b) on the entire positive half-line $0 < x < \infty$?
- **6**. Let X be uniformly distributed on the interval [-1,2] and let $Y=X^2$. Find the probability density function f(y) for Y, correct at every point $y \in \mathbb{R}$.
- 7. Let X be a random variable with mean $\mathsf{E}[X] = \mu$ and variance $\mathsf{Var}[X] = \mathsf{E}[(X \mu)^2] = \sigma^2$. Define a function $\phi(a)$ by

$$\phi(a) = \mathsf{E}[(X - a)^2]$$

(this is the "expected squared error" for our best guess a of what value X might take). Find the point a^* where $\phi(a)$ takes on its minimum value $\phi(a^*)$, and find what that minimum value is. HINT: It does *not* matter whether X is continuous or discrete—you should not need to do any integrals or sums.

8. Let X be a random variable with mean $\mathsf{E}[X] = \mu$ and variance $\mathsf{Var}[X] = \mathsf{E}[(X - \mu)^2] = \sigma^2$, with a continuous distribution with density function f(x). Define a function $\psi(a)$ by

$$\psi(a) = \mathsf{E}|X - a|$$

(this is the "expected absolute error" for our best guess a of what value X might take). Find the point $a^{\#}$ where $\psi(a)$ takes on its minimum value $\psi(a^{\#})$, and find what that minimum value is. Can you find an example where the minimizing value of $\psi(a)$ is not unique?