MTH135/STA104: Probability

Homework \# 7 Due: Tuesday, Nov 1, 2005

Prof. Robert Wolpert

1. For some number $c>0$ the random variable X has a continuous probability distribution with density function

$$
f(x)=c x, \quad 0<x<4
$$

(so $f(x)=0$ for $x \notin(0,4)$); thus for any interval (a, b),

$$
\mathrm{P}[a<X \leq b]=\int_{a}^{b} f(x) d x
$$

Please answer the following questions about X and its density function $f(x)$:
a) Find the value of $c>0: \quad c=$

$$
1=\mathrm{P}[0<X \leq 4]=\int_{0}^{4} c x d x=c 4^{2} / 2=8 c
$$

so evidently $c=\frac{1}{8}$.
b) Find the indicated probabilities:

- $\mathrm{P}[-2<X \leq 2]=\mathrm{P}[0<X \leq 2]=\frac{1}{8} 2^{2} / 2=\frac{1}{4}$
- $\mathrm{P}[2<X \leq 5]=\mathrm{P}[2<X \leq 4]=\frac{1}{8}\left(4^{2}-2^{2}\right) / 2=\frac{3}{4}$
- $\mathrm{P}[|X-2|>1]=1-\mathrm{P}[1<X \leq 3]=1-\frac{1}{8}\left(3^{2}-1^{2}\right) / 2=\frac{1}{2}$

2. The life-times (in years) of cathode-ray tubes (CRTs) are random variables T that satisfy

$$
\mathrm{P}[T>t]=\frac{100}{t^{2}}, \quad t>10
$$

for every $t>10$. Please answer the following questions:
a) The equation above doesn't mention $t<10$, but it does include all the information needed to determine it. Find

$$
\mathrm{P}[T \leq 5]=0 \text {, since } \mathrm{P}[T \leq 10]=1-\mathrm{P}[T>10]=1-1=0
$$

b) Find the pdf $f(t)$ for T; be careful to give it correctly at every $t \in \mathbb{R}$.

$$
f(t)= \begin{cases}200 / t^{3} & t>10 \\ 0 & t \leq 10\end{cases}
$$

c) Evaluate the expected value of T :

$$
\mathrm{E}[T]=\int_{10}^{\infty} t 200 / t^{3} d t=\int_{10}^{\infty} 200 t^{-2} d t=20
$$

d) Find the conditional probability of failure in the next year for a working CRT that is now t years old for each $t \geq 10$:
$\mathrm{P}[T \leq t+1 \mid T>t]=1-\frac{\mathrm{P}[T>t+1]}{\mathrm{P}[T>t]}=1-\frac{100 /(t+1)^{2}}{100 / t^{2}}=1-\left(\frac{t}{t+1}\right)^{2}$
Which is more likely to last another year, a 10-year old CRT or a 20-year old CRT?

The 20-year-old CRT has a better survival chance-

$$
\frac{400}{441} \approx 90.7 \%>82.6 \%=\frac{100}{121}
$$

e) Find the (instantaneous) hazard,

$$
h(t)=\frac{f(t)}{1-F(t)}=\frac{200 / t^{3}}{100 / t^{2}}=2 / t, \quad t>10
$$

Does it increase, decrease, or stay constant?
It decreases for $t>10$
3. In our fishing example we found that the number of fish caught in t hours, X_{t}, had a Poisson probability distribution with mass function

$$
\mathrm{P}\left[X_{t}=x\right]=\frac{(\lambda t)^{x}}{x!} e^{-\lambda t}, \quad x=0,1,2, \cdots
$$

with mean $\mu=\lambda t$, if we catch λ fish per hour on average and if the numbers of fish caught in disjoint time intervals are independent.

Find the probability density function $f_{k}(t)$ for T_{k}, the time at which the $k^{\text {th }}$ fish is caught. Hint: Express the event $T_{k} \leq t$ in terms of X_{t} and use the Poisson probabilities above. Half-credit for the case $k=1$ of the first fish caught.

$$
f_{k}(t)=
$$

\qquad
First find the CDF:

$$
\begin{aligned}
F_{1}(t) & =\mathrm{P}\left[T_{1} \leq t\right] \\
& =\mathrm{P}\left[X_{t} \geq 1\right] \\
& =1-\mathrm{P}\left[X_{t}=0\right]=1-e^{-\lambda t} \quad \text { for } t>0, \quad=0 \text { for } t \leq 0
\end{aligned}
$$

Taking derivatives,

$$
f_{1}(t)= \begin{cases}\lambda e^{-\lambda t} & t>0 \\ 0 & t \leq 0\end{cases}
$$

4. If X is a positive random variable with pdf $f(x)$ and $\operatorname{CDF} F(x)$, so

$$
\begin{aligned}
F(x) & =\mathrm{P}[X \leq x] \\
& =0, \quad x<0 \\
f(x) & =F^{\prime}(x) \\
& =0, \quad x<0
\end{aligned}
$$

and if $Y \equiv \sqrt{X}$, find the $\operatorname{CDF} G(y)=\operatorname{Pr}[Y \leq y]$ and $\operatorname{pdf} g(y)=G^{\prime}(y)$ in terms of $f(x)$ and $F(x)$.

$$
\begin{aligned}
G(y) & =\mathrm{P}[\sqrt{X} \leq y] \\
& =\mathrm{P}\left[X \leq y^{2}\right], \quad y \geq 0 \\
& =F\left(y^{2}\right), \quad y \geq 0 \\
g(y) & =2 y f\left(y^{2}\right), \quad y>0
\end{aligned}
$$

while $G(y)=g(y)=0$ for $y<0$.
5. For each question below, give an example or a brief explanation of why none is possible:
a) If X has a continuous distribution, can a function $Y=g(X)$ possibly have a discrete distribution with $\mathrm{P}[Y=y]>0$ for some y ?

Yes- for example, let X be uniformly distributed on $(0,1)$ and let $g(x)=$ 1 for $x \leq \frac{1}{2}, g(x)=0$ for $x>\frac{1}{2}$.
b) If X has a discrete distribution with finitely-many or countably-many possible values $\left\{x_{j}\right\}$, can a function $Y=g(X)$ possibly have a continuous distribution with density function $g(y)$, so $\mathrm{P}[a<Y \leq b]=\int_{a}^{b} g(y) d y$ for all $a<b$?

No- if X has only countably-many values, then $Y=g(X)$ also has only countably-many values, and cannot have a density function.
c) Is it possible for the density function $f(x)$ for some random variable X to satisfy $f(x)>1$ at any point x ?

Sure. Let X be uniform on the interval ($0, \frac{1}{2}$), for examle; then its density function $f(x)=2$ on ($0, \frac{1}{2}$) (and zero elsewhere).
d) Is it possible for a density function $f(x)$ to have a strictly positive lower bound on the positive half-line, i.e., to satisfy $f(x) \geq \epsilon$ for every $x \in(0, \infty)$, for some fixed positive number $\epsilon>0$?

No. This would imply that $\mathrm{P}[X<x] \geq x \epsilon$ for every $x>0$, which would be bigger than one for $x>1 / \epsilon$, violating the rules about probabilities.
e) Is it possible for the cumulative distribution $F[x]=\mathrm{P}[X \leq x]$ to be strictly increasing (i.e., satisfy $F(a)<F(b)$ for every $a<b$) on the entire positive half-line $0<x<\infty$?

Yes again- let X have density function e^{-x} for $x>0$, for example, to find $F(x)=1-e^{-x}$ on $(0, \infty)$, strictly increasing.
6. Let X be uniformly distributed on the interval $[-1,2]$ and let $Y=X^{2}$. Find the probability density function $f(y)$ for Y, correct at every point $y \in \mathbb{R}$.

Here $Y=g(x)$ with $f_{x}(x)=\frac{1}{3}, \quad-1<x<2, g(x)=x^{2}, g^{\prime}(x)=2 x$, and $g^{-1}(y)= \pm \sqrt{y} ;$ thus

$$
f(y)=\sum_{x: x^{2}=y} \frac{1}{|2 x|} \frac{1}{3} \mathbf{1}_{(-1,2)}(x)= \begin{cases}0 & y<0 \\ \frac{1}{3 \sqrt{y}} & 0 \leq y<1 \\ \frac{1}{6 \sqrt{y}} & 1 \leq y<4 \\ 0 & 4 \leq y\end{cases}
$$

The answer may also be found by first computing the CDF,

$$
F(y)=\mathrm{P}\left[X^{2} \leq y\right]= \begin{cases}0 & y<0 \\ \frac{2 \sqrt{y}}{3} & 0 \leq y<1 \\ \frac{\sqrt{y}}{3} & 1 \leq y<4 \\ 1 & 4 \leq y\end{cases}
$$

from which the answer follows by differentiation.
7. Let X be a random variable with mean $\mathrm{E}[X]=\mu$ and variance $\operatorname{Var}[X]=$ $\mathrm{E}\left[(X-\mu)^{2}\right]=\sigma^{2}$. Define a function $\phi(a)$ by

$$
\phi(a)=\mathrm{E}\left[(X-a)^{2}\right]
$$

(this is the "expected squared error" for our best guess a of what value X might take). Find the point a^{*} where $\phi(a)$ takes on its minimum value $\phi\left(a^{*}\right)$, and find what that minimum value is. HINT: It does not matter whether X is continuous or discrete - you should not need to do any integrals or sums.

Expanding,

$$
\begin{aligned}
\phi(a) & =\mathrm{E}\left[(X-a)^{2}\right] \\
& =\mathrm{E}\left[X^{2}-2 X a+a^{2}\right] \\
& =\mathrm{E}\left[X^{2}\right]-2 a \mathrm{E}[X]+a^{2}
\end{aligned}
$$

Differentiating with respect to a,

$$
\begin{aligned}
\phi^{\prime}(a) & =-2 \mathrm{E}[X]+2 a \\
& =0 \Leftrightarrow a=a^{*} \equiv \mathrm{E}[X],
\end{aligned}
$$

so $a^{*}=\mu$ and $\phi\left(a^{*}\right)=\mathrm{E}\left[(X-\mu)^{2}\right]=\sigma^{2}$.
8. Let X be a random variable with mean $\mathrm{E}[X]=\mu$ and variance $\operatorname{Var}[X]=$ $\mathrm{E}\left[(X-\mu)^{2}\right]=\sigma^{2}$, with a continuous distribution with density function $f(x)$. Define a function $\psi(a)$ by

$$
\psi(a)=\mathrm{E}|X-a|
$$

(this is the "expected absolute error" for our best guess a of what value X might take). Find the point $a^{\#}$ where $\psi(a)$ takes on its minimum value $\psi\left(a^{\#}\right)$, and find what that minimum value is. Can you find an example where the minimizing value of $\psi(a)$ is not unique?

For any $a \in \mathbb{R}$,

$$
\begin{aligned}
\psi(a) & =\mathrm{E}|X-a| \\
& =\int_{x<a}(a-x) f(x) d x+\int_{a<x}(x-a) f(x) d x
\end{aligned}
$$

Differentiating with respect to a,

$$
\begin{aligned}
\psi^{\prime}(a) & =\int_{x<a} f(x) d x-\int_{a<x} f(x) d x \\
& =\mathrm{P}[X<a]-\mathrm{P}[X>a] \\
& =0 \Leftrightarrow \mathrm{P}[X<a]=\frac{1}{2}=\mathrm{P}[X>a]
\end{aligned}
$$

so $a^{\#}=m$ is a median of X. This is unique if $f(x)>0$ for x near m, but not if $f(x)=0$ on some interval with probability $\frac{1}{2}$ on each side - for example, not if X is drawn uniformly from the set $[-2,-1] \cup[1,2]$.

