
MTH135/STA104: Probability

Homework # 7 Due: Tuesday, Nov 1, 2005

Prof. Robert Wolpert

1. For some number c > 0 the random variable X has a continuous prob-
ability distribution with density function

f(x) = c x, 0 < x < 4

(so f(x) = 0 for x /∈ (0, 4)); thus for any interval (a, b),

P[a < X ≤ b] =

∫ b

a

f(x) dx

Please answer the following questions about X and its density function f(x):

a) Find the value of c > 0: c =

1 = P[0 < X ≤ 4] =

∫ 4

0

c x dx = c 42/2 = 8c,

so evidently c = 1
8
.

b) Find the indicated probabilities:

• P[−2 < X ≤ 2] = P[0 < X ≤ 2] = 1
8
22/2 = 1

4

• P[2 < X ≤ 5] = P[2 < X ≤ 4] = 1
8
(42 − 22)/2 = 3

4

• P[|X − 2| > 1] = 1 − P[1 < X ≤ 3] = 1 − 1
8
(32 − 12)/2 = 1

2
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2. The life-times (in years) of cathode-ray tubes (CRTs) are random vari-
ables T that satisfy

P[T > t] =
100

t2
, t > 10

for every t > 10. Please answer the following questions:

a) The equation above doesn’t mention t < 10, but it does include all
the information needed to determine it. Find

P[T ≤ 5] = 0, since P[T ≤ 10] = 1 − P[T > 10] = 1 − 1 = 0

b) Find the pdf f(t) for T ; be careful to give it correctly at every t ∈ R.

f(t) =

{

200/t3 t > 10

0 t ≤ 10

c) Evaluate the expected value of T :

E[T ] =

∫ ∞

10

t 200/t3 dt =

∫ ∞

10

200 t−2 dt = 20

d) Find the conditional probability of failure in the next year for a
working CRT that is now t years old for each t ≥ 10:

P[T ≤ t + 1 | T > t] = 1 − P[T > t + 1]

P[T > t]
= 1 − 100/(t+ 1)2

100/t2
= 1 −

(

t

t+ 1

)2

Which is more likely to last another year, a 10-year old CRT or a 20-year old
CRT?

The 20-year-old CRT has a better survival chance—

400

441
≈ 90.7% > 82.6% =

100

121

e) Find the (instantaneous) hazard,

h(t) =
f(t)

1 − F (t)
=

200/t3

100/t2
= 2/t, t > 10

Does it increase, decrease, or stay constant?

It decreases for t > 10
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3. In our fishing example we found that the number of fish caught in t
hours, Xt, had a Poisson probability distribution with mass function

P[Xt = x] =
(λt)x

x!
e−λt, x = 0, 1, 2, · · ·

with mean µ = λt, if we catch λ fish per hour on average and if the numbers
of fish caught in disjoint time intervals are independent.

Find the probability density function fk(t) for Tk, the time at which the
kth fish is caught. Hint: Express the event Tk ≤ t in terms of Xt and use the
Poisson probabilities above. Half-credit for the case k = 1 of the first fish
caught.

fk(t) =

First find the CDF:

F1(t) = P[T1 ≤ t]

= P[Xt ≥ 1]

= 1 − P[Xt = 0] = 1 − e−λt for t > 0, = 0 for t ≤ 0.

Taking derivatives,

f1(t) =

{

λe−λt t > 0;

0 t ≤ 0.

4. If X is a positive random variable with pdf f(x) and CDF F (x), so

F (x) = P[X ≤ x]

= 0, x < 0

f(x) = F ′(x)

= 0, x < 0

and if Y ≡
√
X, find the CDF G(y) = Pr[Y ≤ y] and pdf g(y) = G′(y) in

terms of f(x) and F (x).

G(y) = P[
√
X ≤ y]

= P[X ≤ y2], y ≥ 0

= F (y2), y ≥ 0;

g(y) = 2y f(y2), y > 0
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while G(y) = g(y) = 0 for y < 0.

5. For each question below, give an example or a brief explanation of why
none is possible:

a) If X has a continuous distribution, can a function Y = g(X) possibly
have a discrete distribution with P[Y = y] > 0 for some y?

Yes— for example, let X be uniformly distributed on (0, 1) and let g(x) =
1 for x ≤ 1

2
, g(x) = 0 for x > 1

2
.

b) IfX has a discrete distribution with finitely-many or countably-many
possible values {xj}, can a function Y = g(X) possibly have a continuous

distribution with density function g(y), so P[a < Y ≤ b] =
∫ b

a
g(y) dy for all

a < b?

No— if X has only countably-many values, then Y = g(X) also has only
countably-many values, and cannot have a density function.

c) Is it possible for the density function f(x) for some random variable
X to satisfy f(x) > 1 at any point x?

Sure. Let X be uniform on the interval (0, 1
2
), for examle; then its density

function f(x) = 2 on (0, 1
2
) (and zero elsewhere).

d) Is it possible for a density function f(x) to have a strictly positive
lower bound on the positive half-line, i.e., to satisfy f(x) ≥ ε for every
x ∈ (0,∞), for some fixed positive number ε > 0?

No. This would imply that P[X < x] ≥ xε for every x > 0, which would
be bigger than one for x > 1/ε, violating the rules about probabilities.

e) Is it possible for the cumulative distribution F [x] = P[X ≤ x] to be
strictly increasing (i.e., satisfy F (a) < F (b) for every a < b) on the entire
positive half-line 0 < x <∞?

Yes again— let X have density function e−x for x > 0, for example, to
find F (x) = 1 − e−x on (0,∞), strictly increasing.

6. Let X be uniformly distributed on the interval [−1, 2] and let Y = X2.
Find the probability density function f(y) for Y , correct at every point y ∈ R.

Here Y = g(x) with fx(x) = 1
3
, −1 < x < 2, g(x) = x2, g′(x) = 2x, and

g−1(y) = ±√
y; thus
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f(y) =
∑

x:x2=y

1

|2x|
1

3
1(−1,2)(x) =























0 y < 0
1

3
√

y
0 ≤ y < 1

1
6
√

y
1 ≤ y < 4

0 4 ≤ y.

The answer may also be found by first computing the CDF,

F (y) = P[X2 ≤ y] =



















0 y < 0
2
√

y

3
0 ≤ y < 1

√
y

3
1 ≤ y < 4

1 4 ≤ y,

from which the answer follows by differentiation.

7. Let X be a random variable with mean E[X] = µ and variance Var[X] =
E[(X − µ)2] = σ2. Define a function φ(a) by

φ(a) = E[(X − a)2]

(this is the “expected squared error” for our best guess a of what value X
might take). Find the point a∗ where φ(a) takes on its minimum value φ(a∗),
and find what that minimum value is. HINT: It does not matter whether X
is continuous or discrete— you should not need to do any integrals or sums.

Expanding,

φ(a) = E[(X − a)2]

= E[X2 − 2Xa+ a2]

= E[X2] − 2 aE[X] + a2

Differentiating with respect to a,

φ′(a) = −2E[X] + 2a

= 0 ⇔ a = a∗ ≡ E[X],

so a∗ = µ and φ(a∗) = E[(X − µ)2] = σ2.
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8. Let X be a random variable with mean E[X] = µ and variance Var[X] =
E[(X −µ)2] = σ2, with a continuous distribution with density function f(x).
Define a function ψ(a) by

ψ(a) = E|X − a|

(this is the “expected absolute error” for our best guess a of what value
X might take). Find the point a# where ψ(a) takes on its minimum value
ψ(a#), and find what that minimum value is. Can you find an example where
the minimizing value of ψ(a) is not unique?

For any a ∈ R,

ψ(a) = E|X − a|

=

∫

x<a

(a− x) f(x) dx+

∫

a<x

(x− a) f(x) dx

Differentiating with respect to a,

ψ′(a) =

∫

x<a

f(x) dx−
∫

a<x

f(x) dx

= P[X < a] − P[X > a]

= 0 ⇔ P[X < a] =
1

2
= P[X > a]

so a# = m is a median of X. This is unique if f(x) > 0 for x near m, but not
if f(x) = 0 on some interval with probability 1

2
on each side— for example,

not if X is drawn uniformly from the set [−2,−1] ∪ [1, 2].
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