P(a < X <= b) = \int_a^b f(x)dx F(x) = P[X < x] = \int_{-oo}^x f(t) dt Expectations: E[g(X)] = \int g(x) f(x) dx, if \int |g(x)| f(x) dx < oo Mean: E[X] = \int x f(x) dx Var: V[X] = \int (x-mu)^2 f(x) dx Independence: < wait until we look at joint distributions > const, a < x <= b Uniform Dist'n: f(x) = < ( const = 1/(b-a) ) 0, other x Mean: E[X] = (a+b)/2 Var: V[X] = (b-a)^2/12 -x^2 Std Normal Dist'n: f(x) = 1/sqrt(2 pi) e -(x-mu)^2/2 sig^2 Gen Normal Dist'n: f(x) = 1/sqrt(2 pi sig^2) e CLT: Sn-n mu S_n = X1 + X2 + ... + Xn, Var(Xn) < oo ==> P[ ------------- < z ] sqrt(n sig^2) -> Phi(z) --------------------------------- Distn with infinite mean: f(x) = 1/x^2, x>1; f(x)=0, x<1 Distn with infinite variance: f(x) = 2/x^3, x>1; f(x)=0, x<1 mu = \int_1^oo x (2/x^3) dx = \int_1^oo 2x^{-2} dx = 2 var = \int_1^oo x^2 (2/x^3) dx - 4 = \int_1^oo 1x^{-1} dx - 4 = oo ---------------------------------- Monte Carlo Integration: a) X_j ~ Unif[a,b]: I_n = ((b-a)/n) \sum g(X_j) E[ I_n ] = (b-a)/n \sum \int_a^b g(x) f(x) dx = (b-a) \int_a^b g(x) 1/(b-a) dx = \int_a^b g(x) dx V[ I_n ] = c/n -> 0 as n -> oo b) X_j ~ f(x) : set w(x) = [1/f(x)] for every x, and: I_n = (1/n) \sum g(X_j) w(X_j) E[ I_n ] = 1/n \sum \int g(x) w(x) f(x) dx = 1/n \sum \int g(x) [1/f(x)] f(x) dx = \int g(x) dx V[ I_n ] = c/n -> 0 as n -> oo ----------------------------------- Exponential, Gamma Distributions: Ex: f(t) = lam exp( - lam t ), t > 0 Pr[ T > s+t | T > t ] = Pr[ T > s ] = exp(-lam s) Radioactive decay? Poisson Process? Survival Time? Half-life? Geometric Distribution: X = [[ T ]] -> Pr[ X=x ] = Pr[ x <= T < x+1 ] = exp(-lam x) - exp(-lam x+1) = exp(-lam x) [1-exp(-lam)] = q^x p, q = exp(-lam), p = 1-q Ga: f(x) = c t^(r-1) exp(-lam t), t > 0 [ c = lam^r/Gamma(r) ] where Gamma(r) = \int_0^oo x^{r-1} exp(-x} dx = (r-1)!, when r is an integer 1,2,...