
1. Sufficiency

A statistic S = S(X) is called sufficient (for θ) in a model X ∼ fn(x | θ) if
the conditional distribution of X, given S (and θ of course), does not depend
on θ; this will be the case exactly when the density function factors as

fn(x | θ) = g(S, θ) · h(x).

Evidently all the evidence an observation of X = x gives about θ is already
given in S = s ≡ S(x).

For example, in an Exponential Family the likelihood

fn(x | θ) = h(x) exp [η(θ) · T (x) −A(θ)]

evidently factors as the product of a function g(T, θ) ≡ eη(θ)·T (x)−A(θ) of
T (x) and θ and a function h(x) of x that does not depend on θ, so the
natural statistic T in an exponential family is sufficient. This is the most
important class of examples, but not the only ones; others include:

• The maximum T (x) ≡ max(x1, ..., xn), for xi ∼ Un(0, θ);

• The range T (x) ≡ [min(x1, ..., xn),max(x1, ..., xn)], for xi ∼ Un(θ1, θ2);

• The vector of order statistics T (x) = (x[1], x[2], ..., x[n]), for any i.i.d.
family xi ∼ f(x | θ);

• The likelihood function itself, T (x) ≡ {fn(x | θ) : θ ∈ Θ};

• Any even function like Ti = |Xi| or Ti = (Xi)
2, if the distribution of

Xi is symmetric about 0 for all θ;

• Any statistic U for which a sufficient statistic S(X) may be written
S(X) = g(U(X)) for some function g(·).

For example, if Xi ∼ No(0, σ2) then S1(X) ≡ (x1, ..., xn) is sufficient, as
are S2(X) = (x1

2, ..., xn
2), S3(X) = (x1

2 + ...+ xk
2, xk+1

2 + ...+ xn
2), and

S4(X) = (x1
2 + ...+xn

2). A sufficient statistic S is called minimal sufficient
if for every other sufficient statistic T there exists a function g(·) such that
S may be written S(X) = g(T (X)); S4 is minimal sufficient in this example
while the others are not (we can show that the natural sufficient statistic
T (X) in an exponential family is always minimal sufficient, so long as the
components of η(θ) are linearly independent and also those of T (X); S4 is

the natural statistic for the No(0, σ2) family of distributions).
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The general principle is that it is enough to store any sufficient statistic,
rather than the entire data set, for any possible inferential goal in an ac-
cepted model xi ∼ f(x | θ); for example, for normally distributed data
xi ∼ No(µ, σ2) it is enough to know the Maximum likelihood estimators
Tn(x) = (x̄n, S

2
n) of µ and σ2, for any possible inference problem concerning

µ or σ2 or both (can you verify that Tn is sufficient?).

For those familiar with measure theory, a sigma algebra G is sufficient if the
conditional expectation E[X | G] does not depend on θ; this generalizes the
definition above (take G = σ(S)), but also allows one to consider infinite
collections of variables which together are sufficient, through G = σ({Si}).
A minimal sufficient sigma algebra G satisfies G ⊂ H for every sufficient
sigma algebra H.

Indeed, it is not only “good enough” to base inference on a sufficient statitic,
it is actually better to do so:

Theorem 1 (Rao-Blackwell) Let T be any estimator of any quantity ψ(θ)
and let S be sufficient. Define TS = E[T (X) | S]. Then R(θ, TS) < R(θ, T )
for all θ ∈ Θ, unless T = g(S) in which case R(θ, TS) = R(θ, T ) ∀θ ∈ Θ.

The proof is immediate; since E[(T − TS)(TS − ψ(θ)) | S] = 0:

R(θ, T ) = E

[

(

T (X) − ψ(θ)
)2

| θ
]

= E

[

(

{T (X) − TS(X)} + {TS(X) − ψ(θ)}
)2

| θ
]

= E
[(

T (X) − TS(X))2 | θ
]

+ E
[(

TS(X) − ψ(θ))2 | θ
]

> 0 + E
[(

TS(X) − ψ(θ))2 | θ
]

= R(θ, TS),

or E
[(

T − TS)2 | θ
]

= 0 if T = g(S) and hence R(θ, TS) = R(θ, T ). Thus it
can only improve any estimator T to condition it on a sufficient statistic S.

From the factorization criterion for the sufficiency of a statistic S, fn(x |
θ) = g(S, θ) · h(x), it is clear that the MLE θ̂ ≡ argmax

(

fn(x | θ)
)

=
argmax

(

g(S, θ)
)

depends on x only through S(x), and hence cannot be im-
proved by “Rao-Blackwellization”, i.e., taking the conditional expectation
given S. Often θ̂ will itself be sufficient; if so, it is also minimal sufficient,
since it is a function of any sufficient S.

WARNING: the concept of sufficiency is only meaningful within an un-

contested model . If data Xi do not come from a No(µ, σ2) distribution but
instead come from a thicker-tailed distribution like the Cauchy or tν(µ, σ

2)
or double exponential or Tukey’s ε-mixture of No(µ, σ2) and No(µ, τ 2σ2) for
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some τ > 0, for example, then (X̄n, S
2) is no longer sufficient and more of

the data must be retained. In the (rather extreme) case of the Cauchy cen-
tered at an unknown θ ∈ Θ = R, for example, the minimal sufficient statistic
is the n-dimensional vector of order statistics— no more parsimonious sum-
mary of the data captures all the evidence about θ. Thus, if you intend to
test the adequacy of a model or to compare models, it is not enough to keep
only sufficient statistics for one particular model.
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