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1 Chi Square

Let’s consider repeating, over and over again, an experiment with k possible
outcomes. If we let n be the number of times we repeat the experiment
(independently!), and count the number Ni of times the i’th outcome occurs
altogether, and denote by ~p = (p1, ..., pk) the vector of probabilities of the k
outcomes, then then each Ni has a binomial distribution

Ni ∼ Bi(n, pi)

but they’re not independent. The joint probability of the events [Ni = ni]
for nonnegative integers ni is the “multinomial” distribution, with pmf:

f(~n | ~p) =

(

n

n1, n2, ..., nk

)

pn1

1 · · · pnk

k (1)

where the “multinomial coefficient” is given by

(

n

n1, n2, ..., nk

)

=

(

n

~n

)

=
n!

n1!n2! · · · nk!

if each ni ≥ 0 and
∑

ni = n, otherwise zero.

(2)

If we observe ~N = ~n, what is the MLE for ~p? The answer is intuitively
obvious, but proving it leads to something new. If we try to maximize
Equation (1) using derivatives (take logs first!), we find

∂

∂pi
log f(~n | ~p) =

ni

pi
,
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so obviously setting these derivatives to zero won’t work— they’re always
positive, so f(~n | ~p) is increasing in each pi. The reason is that this is really
a constrained optimization problem— the {pi}’s have to be non-negative
and sum to one. As a function on R

k, the function f(~n | ~p) of Equation (1)
increases without bound as we take all pi → ∞; but we’re not allowed to let
the sum of pi exceed one.

An elegant solution is the method of Lagrange Multipliers. We introduce an
additional variable λ, and replace the log likelihood with the “Lagrangian”:

L(~p, λ) = log f(~n | ~p) + λ
(

1 −
∑

pi

)

= c +
∑

ni log pi + λ
(

1 −
∑

pi

)

with partial derivatives

∂

∂pi
L(~p, λ) =

ni

pi
− λ (3)

∂

∂λ
L(~p, λ) = 1 −

∑

pi (4)

Note that stationarity w.r.t λ (setting Equation (4) to zero) enforces the
constraint. Now the vanishing of derivatives w.r.t. pi in Equation (3) imply
that ni/pi = λ is constant for all i, so pi = ni/λ, while Equation (4) now
gives 1 =

∑

ni/λ = n/λ, so the solutions are the ones we guessed before:

p̂i = ni/n λ̂ = n.

1.1 Generalized Likelihood Tests

Now let’s consider testing a hypothetical value ~p0 for the probabilities,
against the omnibus alternative:

H0 : ~p = ~p0 = (p0
1, . . . , p

0
k)

H1 : ~p 6= ~p0

(the alternative asserts that pi 6= p0
i for at least one 1 ≤ i ≤ k). The

generalized likelihood ratio against H0 is:
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Λ(~n) =
sup~p f(~n | ~p)

f(~n | ~p0)

=
f(~n | ~̂p)

f(~n | ~p0)

=

(n
~n

)
∏

(ni/n)ni

(

n
~n

)
∏

(p0
i )

ni

=
∏

(ni/np0
i )

ni

Introduce the notation ei = np0
i for the “expected” number of outcomes of

type i (under null hypothesis H0) and manipulate:

Λ(~n) =
∏

[

ni

ei

]ni

=
∏

[

ni − ei + ei

ei

]ni

=
∏

[

1 +
ni − ei

ei

]ni

If the ni’s are all large enough, we can approximate this by:

≈ exp

{

∑ (ni − ei)

ei
ni

}

= exp

{

∑ (ni − ei)(ni − ei + ei)

ei

}

= exp

{

∑ (ni − ei)
2

ei

}

exp

{

∑ (ni − ei)ei

ei

}

= eQ

since
∑

ni =
∑

ei = n so
∑

(ni − ei) = 0, where

Q =
∑ (ni − ei)

2

ei
(5)

is the so-called “Chi Squared” statistic proposed in 1900 by Karl Pearson.

Since each ni ∼ Bi(ni, pi), asymptotically each ni ∼ No(ei, eiq
0
i ) and so

the individual terms in the sum Equation (5) have Ga(1
2 , β) distributions

(proportional to a χ2
1) with β = 1/2qi, if H0 is true; Pearson showed that Q

has approximately (and asymptotically as n → ∞) a χ2
ν distribution with

ν = k−1 degrees of freedom (we’ll see why below). If H0 is false then Q will
be much bigger, of course, leading to the well-known χ2 test for H0, with
P -value 1 − pgamma(Q, ν/2, 1/2).
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1.2 The Distribution of Q(~n)

One way to compute the covariance of Ni and Nj is to use an indicator
representation, as follows. For 1 ≤ ℓ ≤ n let Jℓ be a random integer in the
range 1, ..., k, with probability pj = P[Jℓ = j] for 1 ≤ j ≤ k. Then Ni can
be represented as the sum

Ni =

n
∑

ℓ=1

1{Jℓ=i}

of indicator variables. This makes the following expectations easy for i 6= j:

E[Ni] =
∑

P[Jℓ = i] = npi

E[N2
i ] = E

[

∑

ℓ

∑

ℓ′

1{Jℓ=i}1{J
ℓ′

=i}

]

= npi + n(n − 1)p2
i

= npi(1 − pi) + (npi)
2

E[NiNj ] = E

[

∑

ℓ

∑

ℓ′

1{Jℓ=i}1{J
ℓ′

=j}

]

= n(n − 1)pipj

V(Ni) = npi(1 − pi)

Cov(Ni, Nj) = −npi pj

If we let Z ∼ No(0, 1) be independent of ~N and add Zpi
√

n to each compo-
nent Ni, we will exactly cancel the negative covariance:

Cov
(

(Ni + Zpi

√
n), (Nj + Zpj

√
n)

)

= −npipj + (pi

√
n)(pj

√
n) = 0

while keeping zero mean

E
(

(Ni + Zpi

√
n)

)

= 0

and increase the variance to

V
(

(Ni + Zpi

√
n)

)

= npi(1 − pi) + (pi

√
n)2 = ei.

Thus the random variables (Ni − ei + Zpi
√

n)/
√

ei are uncorrelated and
have mean zero and variance one. By the Central Limit Theorem, they are
approximately k independent standard normal random variables as n → ∞,
so the quadratic form

Q+(~n) =

k
∑

i=1

(Ni − ei + Zpi
√

n)2

ei
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has approximately a χ2
k distribution for large n. But:

Q+(~n) =
∑ (Ni − ei)

2

npi
+

∑ 2(Ni − ei)Z pi
√

n

npi
+

∑ Z2p2
i n

npi

= Q(~n) +
2Z√

n

∑

(Ni − ei) + Z2
∑

pi

= Q(~n) + Z2,

the sum of Q(~n) and a χ2
1 random variable independent of ~N— so Q(~n)

itself must have approximately a χ2
ν distribution with ν = (k − 1) degrees

of freedom.

1.3 P -Values

For even degrees of freedom ν the χ2
ν distribution is just the Ga(α = ν/2, β =

1/2), the waiting time for ν/2 events in a Poisson process Xt with rate 1/2,
so P -values can be computed in closed form

P[Q > q] = P[Xq ≤ ν/2]

= e−q/2

(ν/2)−1
∑

k=0

(q/2)k

k!
.

For example, with ν = 2 degrees of freedom, the P -value is simply e−q/2.

For large values of ν the χ2
ν distribution is close to the normal No(ν, 2ν) by

the Central Limit Theorem, so

P[Q > q] ≈ Φ

(

ν − q√
2ν

)

.
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