Statistics

Robert L. Wolpert
Department of Statistical Science
Duke University, Durham, NC, USA

1 Chi Square

Let's consider repeating, over and over again, an experiment with k possible outcomes. If we let n be the number of times we repeat the experiment (independently!), and count the number N_{i} of times the i 'th outcome occurs altogether, and denote by $\vec{p}=\left(p_{1}, \ldots, p_{k}\right)$ the vector of probabilities of the k outcomes, then then each N_{i} has a binomial distribution

$$
N_{i} \sim \operatorname{Bi}\left(n, p_{i}\right)
$$

but they're not independent. The joint probability of the events [$N_{i}=n_{i}$] for nonnegative integers n_{i} is the "multinomial" distribution, with pmf:

$$
\begin{equation*}
f(\vec{n} \mid \vec{p})=\binom{n}{n_{1}, n_{2}, \ldots, n_{k}} p_{1}^{n_{1}} \cdots p_{k}^{n_{k}} \tag{1}
\end{equation*}
$$

where the "multinomial coefficient" is given by

$$
\binom{n}{n_{1}, n_{2}, \ldots, n_{k}}=\binom{n}{\vec{n}}=\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
$$

if each $n_{i} \geq 0$ and $\sum n_{i}=n$, otherwise zero.

If we observe $\vec{N}=\vec{n}$, what is the MLE for \vec{p} ? The answer is intuitively obvious, but proving it leads to something new. If we try to maximize Equation (1) using derivatives (take logs first!), we find

$$
\frac{\partial}{\partial p_{i}} \log f(\vec{n} \mid \vec{p})=\frac{n_{i}}{p_{i}},
$$

so obviously setting these derivatives to zero won't work - they're always positive, so $f(\vec{n} \mid \vec{p})$ is increasing in each p_{i}. The reason is that this is really a constrained optimization problem - the $\left\{p_{i}\right\}$'s have to be non-negative and sum to one. As a function on \mathbb{R}^{k}, the function $f(\vec{n} \mid \vec{p})$ of Equation (1) increases without bound as we take all $p_{i} \rightarrow \infty$; but we're not allowed to let the sum of p_{i} exceed one.
An elegant solution is the method of Lagrange Multipliers. We introduce an additional variable λ, and replace the log likelihood with the "Lagrangian":

$$
\begin{aligned}
\mathcal{L}(\vec{p}, \lambda) & =\log f(\vec{n} \mid \vec{p})+\lambda\left(1-\sum p_{i}\right) \\
& =c+\sum n_{i} \log p_{i}+\lambda\left(1-\sum p_{i}\right)
\end{aligned}
$$

with partial derivatives

$$
\begin{align*}
\frac{\partial}{\partial p_{i}} \mathcal{L}(\vec{p}, \lambda) & =\frac{n_{i}}{p_{i}}-\lambda \tag{3}\\
\frac{\partial}{\partial \lambda} \mathcal{L}(\vec{p}, \lambda) & =1-\sum p_{i} \tag{4}
\end{align*}
$$

Note that stationarity w.r.t λ (setting Equation (4) to zero) enforces the constraint. Now the vanishing of derivatives w.r.t. p_{i} in Equation (3) imply that $n_{i} / p_{i}=\lambda$ is constant for all i, so $p_{i}=n_{i} / \lambda$, while Equation (4) now gives $1=\sum n_{i} / \lambda=n / \lambda$, so the solutions are the ones we guessed before:

$$
\hat{p}_{i}=n_{i} / n \quad \hat{\lambda}=n .
$$

1.1 Generalized Likelihood Tests

Now let's consider testing a hypothetical value \vec{p}^{0} for the probabilities, against the omnibus alternative:

$$
\begin{array}{ll}
H_{0}: & \vec{p}=\vec{p}^{0}=\left(p_{1}^{0}, \ldots, p_{k}^{0}\right) \\
H_{1}: & \vec{p} \neq \vec{p}^{0}
\end{array}
$$

(the alternative asserts that $p_{i} \neq p_{i}^{0}$ for at least one $1 \leq i \leq k$). The generalized likelihood ratio against H_{0} is:

$$
\begin{aligned}
\Lambda(\vec{n}) & =\frac{\sup _{\vec{p}} f(\vec{n} \mid \vec{p})}{f\left(\vec{n} \mid \vec{p}^{0}\right)} \\
& =\frac{f(\vec{n} \mid \hat{\vec{p}})}{f\left(\vec{n} \mid \vec{p}^{0}\right)} \\
& =\frac{\binom{n}{\vec{n}} \prod\left(n_{i} / n\right)^{n_{i}}}{\binom{n}{\vec{n}} \prod\left(p_{i}^{0}\right)^{n_{i}}} \\
& =\prod\left(n_{i} / n p_{i}^{0}\right)^{n_{i}}
\end{aligned}
$$

Introduce the notation $e_{i}=n p_{i}^{0}$ for the "expected" number of outcomes of type i (under null hypothesis H_{0}) and manipulate:

$$
\begin{aligned}
\Lambda(\vec{n}) & =\prod\left[\frac{n_{i}}{e_{i}}\right]^{n_{i}} \\
& =\prod\left[\frac{n_{i}-e_{i}+e_{i}}{e_{i}}\right]^{n_{i}}=\prod\left[1+\frac{n_{i}-e_{i}}{e_{i}}\right]^{n_{i}}
\end{aligned}
$$

If the n_{i} 's are all large enough, we can approximate this by:

$$
\begin{aligned}
& \approx \exp \left\{\sum \frac{\left(n_{i}-e_{i}\right)}{e_{i}} n_{i}\right\} \\
& =\exp \left\{\sum \frac{\left(n_{i}-e_{i}\right)\left(n_{i}-e_{i}+e_{i}\right)}{e_{i}}\right\} \\
& =\exp \left\{\sum \frac{\left(n_{i}-e_{i}\right)^{2}}{e_{i}}\right\} \quad \exp \left\{\sum \frac{\left(n_{i}-e_{i}\right) e_{i}}{e_{i}}\right\} \\
& =e^{Q}
\end{aligned}
$$

since $\sum n_{i}=\sum e_{i}=n$ so $\sum\left(n_{i}-e_{i}\right)=0$, where

$$
\begin{equation*}
Q=\sum \frac{\left(n_{i}-e_{i}\right)^{2}}{e_{i}} \tag{5}
\end{equation*}
$$

is the so-called "Chi Squared" statistic proposed in 1900 by Karl Pearson. Since each $n_{i} \sim \operatorname{Bi}\left(n_{i}, p_{i}\right)$, asymptotically each $n_{i} \sim \operatorname{No}\left(e_{i}, e_{i} q_{i}^{0}\right)$ and so the individual terms in the sum Equation (5) have $\mathrm{Ga}\left(\frac{1}{2}, \beta\right)$ distributions (proportional to a χ_{1}^{2}) with $\beta=1 / 2 q_{i}$, if H_{0} is true; Pearson showed that Q has approximately (and asymptotically as $n \rightarrow \infty$) a χ_{ν}^{2} distribution with $\nu=k-1$ degrees of freedom (we'll see why below). If H_{0} is false then Q will be much bigger, of course, leading to the well-known χ^{2} test for H_{0}, with P-value 1 - pgamma(Q, $\nu / 2,1 / 2$).

1.2 The Distribution of $Q(\vec{n})$

One way to compute the covariance of N_{i} and N_{j} is to use an indicator representation, as follows. For $1 \leq \ell \leq n$ let J_{ℓ} be a random integer in the range $1, \ldots, k$, with probability $p_{j}=\mathrm{P}\left[J_{\ell}=j\right]$ for $1 \leq j \leq k$. Then N_{i} can be represented as the sum

$$
N_{i}=\sum_{\ell=1}^{n} \mathbf{1}_{\left\{J_{\ell}=i\right\}}
$$

of indicator variables. This makes the following expectations easy for $i \neq j$:

$$
\begin{array}{rlrl}
\mathrm{E}\left[N_{i}\right] & =\sum \mathrm{P}\left[J_{\ell}=i\right] & & =n p_{i} \\
\mathrm{E}\left[N_{i}^{2}\right] & =\mathrm{E}\left[\sum_{\ell} \sum_{\ell^{\prime}} \mathbf{1}_{\left\{J_{\ell}=i\right\}} \mathbf{1}_{\left\{J_{\ell^{\prime}}=i\right\}}\right] & & =n p_{i}+n(n-1) p_{i}^{2} \\
& =n p_{i}\left(1-p_{i}\right)+\left(n p_{i}\right)^{2} \\
\mathrm{E}\left[N_{i} N_{j}\right] & =\mathrm{E}\left[\sum_{\ell} \sum_{\ell^{\prime}} \mathbf{1}_{\left\{J_{\ell}=i\right\}} \mathbf{1}_{\left\{J_{\ell^{\prime}}=j\right\}}\right] & & =n(n-1) p_{i} p_{j} \\
\mathrm{~V}\left(N_{i}\right) & =n p_{i}\left(1-p_{i}\right) & & \\
\operatorname{Cov}\left(N_{i}, N_{j}\right) & =-n p_{i} p_{j} & &
\end{array}
$$

If we let $Z \sim \operatorname{No}(0,1)$ be independent of \vec{N} and add $Z p_{i} \sqrt{n}$ to each component N_{i}, we will exactly cancel the negative covariance:

$$
\operatorname{Cov}\left(\left(N_{i}+Z p_{i} \sqrt{n}\right),\left(N_{j}+Z p_{j} \sqrt{n}\right)\right)=-n p_{i} p_{j}+\left(p_{i} \sqrt{n}\right)\left(p_{j} \sqrt{n}\right) \quad=0
$$

while keeping zero mean

$$
\mathrm{E}\left(\left(N_{i}+Z p_{i} \sqrt{n}\right)\right)=0
$$

and increase the variance to

$$
\mathrm{V}\left(\left(N_{i}+Z p_{i} \sqrt{n}\right)\right)=n p_{i}\left(1-p_{i}\right)+\left(p_{i} \sqrt{n}\right)^{2} \quad=e_{i} .
$$

Thus the random variables $\left(N_{i}-e_{i}+Z p_{i} \sqrt{n}\right) / \sqrt{e_{i}}$ are uncorrelated and have mean zero and variance one. By the Central Limit Theorem, they are approximately k independent standard normal random variables as $n \rightarrow \infty$, so the quadratic form

$$
Q^{+}(\vec{n})=\sum_{i=1}^{k} \frac{\left(N_{i}-e_{i}+Z p_{i} \sqrt{n}\right)^{2}}{e_{i}}
$$

has approximately a χ_{k}^{2} distribution for large n. But:

$$
\begin{aligned}
Q^{+}(\vec{n}) & =\sum \frac{\left(N_{i}-e_{i}\right)^{2}}{n p_{i}} & +\sum \frac{2\left(N_{i}-e_{i}\right) Z p_{i} \sqrt{n}}{n p_{i}} & +\sum \frac{Z^{2} p_{i}^{2} n}{n p_{i}} \\
& =Q(\vec{n}) & +\frac{2 Z}{\sqrt{n}} \sum\left(N_{i}-e_{i}\right) & +Z^{2} \sum p_{i} \\
& =Q(\vec{n})+Z^{2}, & &
\end{aligned}
$$

the sum of $Q(\vec{n})$ and a χ_{1}^{2} random variable independent of \vec{N} - so $Q(\vec{n})$ itself must have approximately a χ_{ν}^{2} distribution with $\nu=(k-1)$ degrees of freedom.

1.3 P-Values

For even degrees of freedom ν the χ_{ν}^{2} distribution is just the $\mathrm{Ga}(\alpha=\nu / 2, \beta=$ $1 / 2$), the waiting time for $\nu / 2$ events in a Poisson process X_{t} with rate $1 / 2$, so P-values can be computed in closed form

$$
\begin{aligned}
\mathrm{P}[Q>q] & =\mathrm{P}\left[X_{q} \leq \nu / 2\right] \\
& =e^{-q / 2} \sum_{k=0}^{(\nu / 2)-1} \frac{(q / 2)^{k}}{k!} .
\end{aligned}
$$

For example, with $\nu=2$ degrees of freedom, the P-value is simply $e^{-q / 2}$. For large values of ν the χ_{ν}^{2} distribution is close to the normal $\mathrm{No}(\nu, 2 \nu)$ by the Central Limit Theorem, so

$$
\mathrm{P}[Q>q] \approx \Phi\left(\frac{\nu-q}{\sqrt{2 \nu}}\right)
$$

