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1 Interval Estimates

Point estimates of unknown parameters ¢ governing the distribution of an
observed quantity X are unsatisfying if they come with no measure of accu-
racy or precision. One approach to giving such a measure is to offer interval
estimates for 6, rather than point estimates; upon observing X, we construct
an interval [a,b] which is very likely to contain 6, and which is very short.
The approach to exactly how these are constructed and interpreted is dif-
ferent for inference in the Sampling Theory tradition, and in the Bayesian
tradition. In these notes I'll present both approaches to estimating the mean
of a Poisson random variable on the basis of a random sample of fixed size
n.

1.1 Sampling Theory: Confidence Intervals

Let {X;} be n iid observations from the Poisson distribution with unknown
mean 6, and let 0 < v < 1 be a number between zero and one. Denote by
X the vector of all n components, and by X = Z'} the space of its possible
values, non-negative n-tuples of integers; also denote by © = R the possible
values of 6. A vy-Confidence Interval is a pair of functions A: X — R and
B: X — R with the property that

(VO € ©) PylA(X) <0 < B(X)] > 7. (1)

Notice that this probability is for each fized 0; it is the endpoints of the
interval (A, B) that are random in this calculation, not 6.

Let’s try to find a y-Confidence Interval that is



e symmetric in the sense that the two possible errors each have the same
error bound,

Pt < A) <2, RBO <T@

e as short as possible, subject to the error bound.

Clearly each function A and B will be a monotonically increasing function
of the sufficient statistic S = XX; ~ Po(nf); let’s write Ag and Bg for those
functions, and consider Ag first. Before we do, remember that the arrival
time T}, for the k’th event in a unit-rate Poisson process X; has the Ga(k,1)
distribution, and that X; > k if and only if T} < t (at least k fish by time
t if and only if the k’th fish arrives before time t)— hence, in R, the CDF
functions for Gamma and Poisson are related for all £k € N and ¢ > 0 by

1 —ppois(k — 1,t) = pgamma(t,k,1).

Also recall the Gamma quantile function in R, an inverse for the CDF func-
tion, which satisfies p = pgamma(t,k,b) if and only if t = qgamma(p, k, b),
and that if Y ~ Ga(a, 8) and b > 0 then Y/b ~ Ga(«, 5b), so

pgamma(b 6, o, 1) = pgamma(f, a, b).
Fix any positive integer k. To achieve Equation (2) for § < Ay, we need:

1—
—5 = Palt < AX)]

> Py[S > k]

=1 —ppois(k — 1,n6)

= pgamma(nf, k, 1) = pgamma (6, k,n), i.e.

qgamma(T’Y,k,n) >0

for each 0 < Aj. Evidently this happens if and only if:

qgamma( v ,k,n) > Ayg. (3)



Similarly, for nonnegative k and By < 6, Equation (2) requires:

22 RB(X) <0

> PolS < k]

= ppois(k,nf)

=1 — pgamma(nf,k+ 1,1), i.e.
I+~

5 < pgamma(f,k + 1,n), i.e.

Ykt <0

1
qgamma(

for each 6 > Byj. This happens if and only if:

qgamma(*—— k +1,n) < By. (4)

The shortest interval subject to the two constraints of Equations (3,4) is:

¥ 1+
Ay = qgamma(?,k,n) By, = qgamma(

Tx+1n). (5

1.2 Bayesian Credible Intervals

A conjugate Bayesian analysis for iid Poisson data {X;} id Po(f) begins
with the selection of parmeters o > 0, 8 > 0 for a Ga(a, 3) prior density

7(0) oc 9 Le= P

and calculation of the likelihood function

where again S = 3", X;. The posterior distribution is

7_‘_(9 ‘ x) x 0a+S—16—(6+n)9
~ Ga(a+ S, f+n).



00

1.

0.98
1

0.96
1

P(A(X) <6, 0<B(X))

0.94
1

0.92
1

0.90
1

0 20 40 60 80 100

[:]

Figure 1: Exact coverage probability for 95% Poisson Confidence Intervals

Thus a symmetric v posterior (“credible”) interval for 6 can be given by
7 = Pla(X) < 0 < b(X) | X] (6)

where a(X) = ag and b(X) = bg with

1— 1+
ax = qgamna(—, a+k, f+n) by = qgamna(—L,a+k, Gn). (1)

1.3 Comparison

The two probability statements in Equations (1,6) are different— in Equa-
tion (1) the value of € is fixed while X (and hence the sufficient statistic
S) is random. Because S has a discrete distribution it is not possible to
achieve exact equality for all ; the probability Py[A(X) < 6 < B(X)] (as a
function of #) jumps at each of the points { A, Bx} (see Figure (1)). Instead
we guarantee a minumum probability of v (7 = 0.95 in Figure (1)) that 6
will be captured by the interval. In Equation (6), however, X (and hence S)
are fixed, and we consider 6 to be random; it has a continuous distribution,
and it is possible to achieve exact equality.

The formulas for the interval endpoints given in Equations (5, 7) are similar—
if we take 8 =0 and o = % they will be as close as possible to each other.
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Note that this corresponds to an improper Ga(%, 0) prior distribution
m(0) o< 715y,
but the posterior distribution (6 | X) ~ Ga(S+3,n) is proper for any

X € X. For any « and (3, all the intervals have the same asymptotic behavior
for large m; by the central limit theorem,

A(X),a(X) ~ X — 241/ X /n, B(X),b(X) ~ X + 24/ X /n
where ®(z,) = (14+7)/2, so v = ®(z,) — ®(—2,).



