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1 Interval Estimates

Point estimates of unknown parameters θ governing the distribution of an
observed quantity X are unsatisfying if they come with no measure of accu-
racy or precision. One approach to giving such a measure is to offer interval

estimates for θ, rather than point estimates; upon observing X, we construct
an interval [a, b] which is very likely to contain θ, and which is very short.
The approach to exactly how these are constructed and interpreted is dif-
ferent for inference in the Sampling Theory tradition, and in the Bayesian
tradition. In these notes I’ll present both approaches to estimating the mean
of a Poisson random variable on the basis of a random sample of fixed size
n.

1.1 Sampling Theory: Confidence Intervals

Let {Xj} be n iid observations from the Poisson distribution with unknown
mean θ, and let 0 < γ < 1 be a number between zero and one. Denote by
X the vector of all n components, and by X = Z

n
+ the space of its possible

values, non-negative n-tuples of integers; also denote by Θ = R+ the possible
values of θ. A γ-Confidence Interval is a pair of functions A : X → R and
B : X → R with the property that

(∀θ ∈ Θ) Pθ[A(X) < θ < B(X)] ≥ γ. (1)

Notice that this probability is for each fixed θ; it is the endpoints of the
interval (A,B) that are random in this calculation, not θ.

Let’s try to find a γ-Confidence Interval that is
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• symmetric in the sense that the two possible errors each have the same
error bound,

Pθ[θ ≤ A(X)] ≤
1 − γ

2
, Pθ[B(X) ≤ θ] ≤

1 − γ

2
(2)

• as short as possible, subject to the error bound.

Clearly each function A and B will be a monotonically increasing function
of the sufficient statistic S = ΣXj ∼ Po(nθ); let’s write AS and BS for those
functions, and consider AS first. Before we do, remember that the arrival
time Tk for the k’th event in a unit-rate Poisson process Xt has the Ga(k, 1)
distribution, and that Xt ≥ k if and only if Tk ≤ t (at least k fish by time
t if and only if the k’th fish arrives before time t)— hence, in R, the CDF
functions for Gamma and Poisson are related for all k ∈ N and t > 0 by

1− ppois(k− 1, t) = pgamma(t, k, 1).

Also recall the Gamma quantile function in R, an inverse for the CDF func-
tion, which satisfies p = pgamma(t, k, b) if and only if t = qgamma(p, k, b),
and that if Y ∼ Ga(α, β) and b > 0 then Y/b ∼ Ga(α, β b), so

pgamma(b θ, α, 1) = pgamma(θ, α, b).

Fix any positive integer k. To achieve Equation (2) for θ ≤ Ak, we need:

1 − γ

2
≥ Pθ[θ ≤ A(X)]

≥ Pθ[S ≥ k]

= 1 − ppois(k− 1, nθ)

= pgamma(nθ, k, 1) = pgamma(θ, k, n), i.e.

qgamma(
1− γ

2
, k, n) ≥ θ

for each θ ≤ Ak. Evidently this happens if and only if:

qgamma(
1− γ

2
, k, n) ≥ Ak. (3)
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Similarly, for nonnegative k and Bk ≤ θ, Equation (2) requires:

1 − γ

2
≥ Pθ[B(X) ≤ θ]

≥ Pθ[S ≤ k]

= ppois(k, nθ)

= 1 − pgamma(nθ, k+ 1, 1), i.e.

1 + γ

2
≤ pgamma(θ, k+ 1, n), i.e.

qgamma(
1+ γ

2
, k + 1, n) ≤ θ

for each θ ≥ Bk. This happens if and only if:

qgamma(
1+ γ

2
, k + 1, n) ≤ Bk. (4)

The shortest interval subject to the two constraints of Equations (3, 4) is:

Ak = qgamma(
1− γ

2
, k, n) Bk = qgamma(

1+ γ

2
, k + 1, n). (5)

1.2 Bayesian Credible Intervals

A conjugate Bayesian analysis for iid Poisson data {Xj}
iid
∼ Po(θ) begins

with the selection of parmeters α > 0, β > 0 for a Ga(α, β) prior density

π(θ) ∝ θα−1e−βθ

and calculation of the likelihood function

f(x | θ) =
n

∏

j=1

[

θxj

xj !
e−θ

]

∝ θSe−nθ,

where again S =
∑n

j=1 Xj. The posterior distribution is

π(θ | x) ∝ θα+S−1e−(β+n)θ

∼ Ga(α + S, β + n).
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Figure 1: Exact coverage probability for 95% Poisson Confidence Intervals

Thus a symmetric γ posterior (“credible”) interval for θ can be given by

γ = P[a(X) < θ < b(X) | X] (6)

where a(X) = aS and b(X) = bS with

ak = qgamma(
1−γ

2
, α+k, β+n) bk = qgamma(

1+γ

2
, α+k, β+n). (7)

1.3 Comparison

The two probability statements in Equations (1, 6) are different— in Equa-
tion (1) the value of θ is fixed while X (and hence the sufficient statistic
S) is random. Because S has a discrete distribution it is not possible to
achieve exact equality for all θ; the probability Pθ[A(X) < θ < B(X)] (as a
function of θ) jumps at each of the points {Ak, Bk} (see Figure (1)). Instead
we guarantee a minumum probability of γ (γ = 0.95 in Figure (1)) that θ
will be captured by the interval. In Equation (6), however, X (and hence S)
are fixed, and we consider θ to be random; it has a continuous distribution,
and it is possible to achieve exact equality.

The formulas for the interval endpoints given in Equations (5, 7) are similar—
if we take β = 0 and α = 1

2 they will be as close as possible to each other.
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Note that this corresponds to an improper Ga(1
2 , 0) prior distribution

π(θ) ∝ θ−1/2
1{θ>0},

but the posterior distribution π(θ | X) ∼ Ga(S+1
2 , n) is proper for any

X ∈ X. For any α and β, all the intervals have the same asymptotic behavior
for large n; by the central limit theorem,

A(X), a(X)  X̄ − zγ

√

X̄/n, B(X), b(X) X̄ + zγ

√

X̄/n

where Φ(zγ) = (1 + γ)/2, so γ = Φ(zγ) − Φ(−zγ).
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