1. Convergence In Distribution
 (a) For events \(\{A_n\} \) and \(A \) in some probability space \((\Omega, \mathcal{F}, P)\), define Bernoulli random variables by \(X_n \equiv 1_{A_n} \) and \(X \equiv 1_A \). As \(n \to \infty \),
 i. Under what conditions on \(\{A_n\} \) and \(A \) will \(X_n \Rightarrow X \)?
 ii. Under what conditions on \(\{A_n\} \) and \(A \) will \(X_n \to X \) in \(L_1 \)?
 iii. Under what conditions on \(\{A_n\} \) and \(A \) will \(X_n \to X \) in \(L_\infty \)?
 (b) Let \(\{X_n\} \) be a sequence of R V’s with distributions given by
 \[
 P[X_n = 1 - \frac{1}{n}] = P[X_n = 1 + \frac{1}{n}] = \frac{1}{2}.
 \]
 Show that \(X_n \) converges in distribution, and find the limiting distribution.
 (c) Define probability density functions by
 \[
 f_n(x) = \begin{cases}
 1 - \cos(2n\pi x) & 0 \leq x \leq 1 \\
 0 & \text{otherwise}
 \end{cases}
 \]
 and let \(F_n \) be the corresponding distribution functions. Show that \(F_n \) converges weakly (i.e., in distribution) and find the limit. Also show that the density functions \(f_n \) do not converge pointwise.
 (d) Let \(Y_n \sim \text{No}(\mu_n, \sigma_n^2) \) and \(Y \sim \text{No}(\mu, \sigma^2) \) be normally-distributed random variables. Show that \(Y_n \Rightarrow Y \) if and only if \(\mu_n \to \mu \) and \(\sigma_n^2 \to \sigma^2 \). Find the Kullback-Leibler divergence \(K(\mu \parallel \mu_n) \equiv -\int \log \frac{\mu_n(dx)}{\mu(dx)} \mu(dx) \).

2. Central Limit Theorem (CLT)
 (a) Fix \(a > 1 \) and let \(X_n \) be an iid sequence with density function
 \[
 f(x) = a|x|^{-2a}, \quad |x| \geq 1; \quad f(x) = 0, \quad |x| < 1.
 \]
 Compute \(E[X_1] \) and \(E[X_1^2] \). Set \(S_n \equiv \sum_{i=1}^n X_i \). Find the limiting distributions of \(S_n/n \) and of \(S_n/\sqrt{n} \) as \(n \to \infty \). Extra credit: What happens for \(a < 1 \)? For \(a = 1 \)?
 (b) Delta method. Let \(\{X_j\} \overset{iid}{\sim} \text{Bi}(1, \theta) \) be independent Bernoulli random variables with partial sum \(S_n \equiv \sum_{j=1}^n X_j \sim \text{Bi}(n, \theta) \) and sample mean \(\overline{X}_n \equiv S_n/n \), for some \(\theta \in (0, 1) \), and let \(\phi \in C^\infty(0, 1) \) be an infinitely-differentiable real-valued function on the unit interval. For large \(n \) find the approximate mean and variance of \(\phi(\overline{X}_n) \), correct to order \(1/n \). Show your work; keep track of the error terms!

\[^1 \text{Taylor’s theorem might help} \]