Chapter 4 sections

- 4.1 Expectation
- 4.2 Properties of Expectations
- 4.3 Variance
- 4.4 Moments
- 4.5 The Mean and the Median
- 4.6 Covariance and Correlation
- 4.7 Conditional Expectation
- **SKIP:** 4.8 Utility
Summarizing distributions

- The distribution of X contains everything there is to know about the probabilistic properties of X.
- However, sometimes we want to summarize the distribution of X in one or a few numbers
 - e.g. to more easily compare two or more distributions.
- Examples of descriptive quantities:
 - Mean (= Expectation)
 - Center of mass - weighted average
 - Median, Moments
 - Variance, Interquartile Range (IQR), Covariance, Correlation
Definition of Expectation $\mu = E(X)$

Def: Mean aka. Expected value

Let X be a random variable with p.d.f $f(x)$. The *mean*, or *expected value* of X, denoted $E(X)$, is defined as follows:

- **X discrete:**
 $E(X) = \sum_{All \ x} xf(x)$
 assuming the sum exists.

- **X continuous:**
 $E(X) = \int_{-\infty}^{\infty} xf(x) \, dx$
 assuming the integral exists.

If the sum or integral does not exist we say that the expected value does not exist.

The mean is often denoted with μ.

Recall the distribution of $Y =$ the number of heads in 3 tosses (coin toss example from Lecture 4)

<table>
<thead>
<tr>
<th>y</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_Y(y)$</td>
<td>$\frac{1}{8}$</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{1}{8}$</td>
</tr>
</tbody>
</table>

then

$$E(Y) = 0 \cdot \frac{1}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{3}{8} + 3 \cdot \frac{1}{8} = \frac{12}{8} = \frac{3}{2} = 1.5$$
Examples

- Recall the distribution of Y = the number of heads in 3 tosses (coin toss example from Lecture 4)

<table>
<thead>
<tr>
<th>y</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_Y(y)$</td>
<td>$\frac{1}{8}$</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{1}{8}$</td>
</tr>
</tbody>
</table>

then

$$E(Y) = 0 \cdot \frac{1}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{3}{8} + 3 \cdot \frac{1}{8} = \frac{12}{8} = \frac{3}{2} = 1.5$$

- Find $E(X)$ where $X \sim \text{Binom}(n, p)$. The pf of X is

$$f(x) = \binom{n}{x} p^x (1 - p)^{n-x} \quad \text{for} \ x = 0, 1, \ldots, n$$

- Find $E(X)$ where $X \sim \text{Uniform}(a, b)$. The pdf of X is

$$f(x) = \frac{1}{b - a} \quad \text{for} \ a \leq x \leq b$$
Theorem 4.1.1

Let X be a random variable with probability density function $f(x)$ and $g(x)$ be a real-valued function. Then

- X discrete:
 \[
 E(g(X)) = \sum_{\text{All } x} g(x)f(x)
 \]

- X continuous:
 \[
 E(g(X)) = \int_{-\infty}^{\infty} g(x)f(x) \, dx
 \]

Example: Find $E(X^2)$ where $X \sim \text{Uniform}(a, b)$.

Expectation of $g(X, Y)$

Theorem 4.1.2

Let X and Y be random variables with joint probability density function $f(x, y)$ and let $g(x, y)$ be a real-valued function. Then

- X and Y discrete:

 $$E(g(X, Y)) = \sum_{\text{All } x, y} g(x, y)f(x, y)$$

- X and Y continuous:

 $$E(g(X, Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y)f(x, y) \, dx \, dy$$

Example: Find $E\left(\frac{X+Y}{2}\right)$ where X and Y are independent and $X \sim \text{Uniform}(a, b)$ and $Y \sim \text{Uniform}(c, d)$.
Properties of Expectation

Theorems 4.2.1, 4.2.4 and 4.2.6:

- $E(aX + b) = aE(X) + b$ for constants a and b.
- Let X_1, \ldots, X_n be n random variables, all with finite expectations $E(X_i)$, then

 $$E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i)$$

- Corollary: $E(a_1 X_1 + \cdots + a_n X_n + b) = a_1 E(X_1) + \cdots + a_n E(X_n) + b$ for constants b, a_1, \ldots, a_n.

- Let X_1, \ldots, X_n be n independent random variables, all with finite expectations $E(X_i)$, then

 $$E\left(\prod_{i=1}^{n} X_i\right) = \prod_{i=1}^{n} E(X_i)$$

CAREFUL !!! In general $E(g(X)) \neq g(E(X))$.
For example: $E(X^2) \neq [E(X)]^2$
Examples

If X_1, X_2, \ldots, X_n are i.i.d. $\text{Bernoulli}(p)$ random variables then

$Y = \sum_{i=1}^{n} X_i \sim \text{Binomial}(n, p)$.

$$E(X_i) = 0 \times (1 - p) + 1 \times p = p \quad \text{for } i = 1, \ldots, n$$

$$\Rightarrow E(Y) = E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i) = \sum_{i=1}^{n} p = np$$

Note: i.i.d. stands for independent and identically distributed
Definition of Variance \(\sigma^2 = \text{Var}(X) \)

Def: Variance

Let \(X \) be a random variable (discrete or continuous) with a finite mean \(\mu = E(X) \). The **Variance of \(X \)** is defined as

\[
\text{Var}(X) = E \left((X - \mu)^2 \right)
\]

The **standard deviation of \(X \) is defined as** \(\sqrt{\text{Var}(X)} \)

We often use \(\sigma^2 \) for variance and \(\sigma \) for standard deviation.

Theorem 4.3.1 – Another way of calculating variance

For any random variable \(X \)

\[
\text{Var}(X) = E(X^2) - [E(X)]^2
\]
Examples - calculating the variance

- Recall the distribution of $Y =$ the number of heads in 3 tosses (coin toss example from Lecture 4)

<table>
<thead>
<tr>
<th>y</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_Y(y)$</td>
<td>$\frac{1}{8}$</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{1}{8}$</td>
</tr>
</tbody>
</table>

We already found that $\mu = E(Y) = 1.5$. Then

$$Var(Y) = (0 - 1.5)^2 \frac{1}{8} + (1 - 1.5)^2 \frac{3}{8} + (2 - 1.5)^2 \frac{3}{8} + (3 - 1.5)^2 \frac{1}{8}$$

$$= 0.75$$

- Find $Var(X)$ where $X \sim Uniform(a, b)$
Properties of the Variance

Theorems 4.3.2, 4.3.3, 4.3.4 and 4.3.5

- \(\text{Var}(X) \geq 0 \) for any random variable \(X \).
- \(\text{Var}(X) = 0 \) if and only if \(X \) is a constant, i.e. \(P(X = c) = 1 \) for some constant \(c \).
- \(\text{Var}(aX + b) = a^2 \text{Var}(X) \)
- If \(X_1, \ldots, X_n \) are independent we have
 \[
 \text{Var} \left(\sum_{i=1}^{n} X_i \right) = \sum_{i=1}^{n} \text{Var}(X_i)
 \]
Examples

If X_1, X_2, \ldots, X_n are i.i.d. Bernoulli(p) random variables then $Y = \sum_{i=1}^{n} X_i \sim \text{Binomial}(n, p)$.

$$E(X_i) = p \quad \text{for } i = 1, \ldots, n$$

$$E(X_i^2) = 0^2 \times (1 - p) + 1^2 \times p = p \quad \text{for } i = 1, \ldots, n$$

$$\Rightarrow \text{Var}(X_i) = E(X_i^2) - [E(X_i)]^2 = p - p^2 = p(1 - p)$$

$$\Rightarrow \text{Var}(Y) = \text{Var} \left(\sum_{i=1}^{n} X_i \right) = \sum_{i=1}^{n} \text{Var}(X_i) = \sum_{i=1}^{n} p(1 - p)$$

$$= np(1 - p)$$
Measures of location and scales

The mean is a measure of location, the variance is a measure of scale.

Different mean, same variance

Same means, different variance
Moments and Central moments

Def: Moments

Let X be a random variable and k be a positive integer.

- The expectation $E(X^k)$ is called the k^{th} moment of X.
- Let $E(X) = \mu$. The expectation $E((X - \mu)^k)$ is called the k^{th} central moment of X.

- The first moment is the mean: $\mu = E(X^1)$.
- The first central moment is zero: $E(X - \mu) = E(X) - E(X) = 0$.
- The second central moment is the variance: $\sigma^2 = E((X - \mu)^2)$.

Moments and Central moments

- **Symmetric distribution**: If the p.d.f \(f(x) \) is symmetric with respect to a point \(x_0 \), i.e. \(f(x_0 + \delta) = f(x_0 - \delta) \) for all \(\delta \)
- If the mean of a symmetric distribution exists, then it is the point of symmetry.
- If the distribution of \(X \) is symmetric w.r.t. its mean \(\mu \) then \(E ((X - \mu)^k) = 0 \) for \(k \) odd (if the central moment exists)
- **Skewness**: \(E ((X - \mu)^3) / \sigma^3 \)
Moment generating function

Def: Moment Generating Function
Let X be a random variable. The function

$$
\psi(t) = E\left(e^{tX} \right) \quad t \in \mathbb{R}
$$

is called the moment generating function (m.g.f.) of X

Theorem 4.4.2
Let X be a random variables whose m.g.f. $\psi(t)$ is finite for t in an open interval around zero. Then the nth moment of X is finite, for $n = 1, 2, \ldots$, and

$$
E(X^n) = \left. \frac{d^n}{dt^n} \psi(t) \right|_{t=0}
$$
Let $X \sim \text{Gamma}(n, \beta)$. Then X has the pdf

$$f(x) = \frac{1}{(n-1)! \beta^n} x^{n-1} e^{-x/\beta} \quad \text{for } x > 0$$

Find the m.g.f. of X and use it to find the mean and the variance of X.
Properties of m.g.f.

Theorems 4.4.3 and 4.4.4:

- $\psi_{aX+b}(t) = e^{bt} \psi_X(at)$
- Let $Y = \sum_{i=1}^{n} X_i$ where X_1, \ldots, X_n are independent random variables with m.g.f. $\psi_i(t)$ for $i = 1, \ldots, n$ Then
 \[\psi_Y(t) = \prod_{i=1}^{n} \psi_i(t) \]

Theorem 4.4.5: Uniqueness of the m.g.f.

Let X and Y be two random variables with m.g.f.'s $\psi_X(t)$ and $\psi_Y(t)$.
If the m.g.f.'s are finite and $\psi_X(t) = \psi_Y(t)$ for all values of t in an open interval around zero, then X and Y have the same distribution.
Example

- Let $X \sim N(\mu, \sigma^2)$. X has the pdf

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(x - \mu)^2}{2\sigma^2} \right)$$

and the m.g.f. for the normal distribution is

$$\psi(t) = \exp \left(\mu t + \frac{t^2 \sigma^2}{2} \right)$$

Homework (not to turn in): Show that $\psi(t)$ is the m.g.f. of X.

- Let X_1, \ldots, X_2 be independent Gaussian random variables with means μ_i and variances σ_i^2. What is the distribution of $Y = \sum_{i=1}^{n} X_i$?