
Final Examination
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You must show your work to get credit. Unsupported answers are
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Name: STA 205: Prob & Meas Theory

Problem 1: Let X1,X2, . . . be real-valued L1 random variables on some
probability space (Ω,F,P)1.

a) If the {Xn} ⊂ L1(Ω,F,P) all have the same probability distribution
µ = P ◦ Xn

−1, show that they are uniformly integrable (UI).

b) If (instead) (Ω,F,P) =
(

(0, 1],B, λ
)

and the {Xn} satisfy the con-
dition:

(∀ǫ > 0)(∃δ > 0)(∀A ∈ F) P[A] ≤ δ ⇒ E
[

|Xn|1A

]

≤ ǫ,

then find a uniform bound for ‖Xn‖1 (this implies that {Xn} are UI).

1The conditions on {Xn} or (Ω, F, P) given in each part of this problem applies only

to that part.
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Name: STA 205: Prob & Meas Theory

Problem 1 (cont’d): Still {Xn} ⊂ L1(Ω,F,P), footnote1 still applies.

c) If E[ |Xn|
n ] ≤ n for n ∈ N and Xn → 0 in probability, does it follow

that EXn → 0? © Yes © No. Give a proof or counterexample.

d) If Xn = YnZ with ‖Yn‖3 ≤ B < ∞ uniformly and Z ∈ L2 so
A = ‖Z‖2 < ∞, does it follow that {Xn} are UI? © Yes © No
Proof or counter-example:
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Name: STA 205: Prob & Meas Theory

Problem 2: Let Ω = (0, 1] with Lebesgue measure P = λ on the Borel
sets F = B(Ω), and set Y (ω) := 4ω(1 − ω) for ω ∈ Ω.

a) Find the conditional expectation of each arbitrary X ∈ L1(Ω,F,P):
E[X | Y ](ω) =

b) Find all random variables Z that are independent of σ(Y ).
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Name: STA 205: Prob & Meas Theory

Problem 3: Let {Xj} be random variables on (Ω,F,P) and set Sn =
∑n

j=1 Xj , their partial sum.

a) (8) If Xj → 0 almost surely, prove that 1
n
Sn → 0 almost-surely.

b) (6) Give an example where Xj → 0 in probability but 1
n
Sn 6→ 0 in

probability.

c) (6) Show that if Ω is countable then Xj → 0 almost surely if and
only if Xj → 0 in probability (this is a hint for part b) above). Note F is
arbitrary, not necessarily 2Ω.
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Name: STA 205: Prob & Meas Theory

Problem 4: Let {ξn} be iid with any continuous distribution (normal,
perhaps) and define the event An (“ξn is a new record”) for n ∈ N by2

An =

{

ω : ξn > sup
1≤j<n

ξj

}

a) Prove that the event N = {ω : ξj = ξk for any j 6= k } has proba-
bility zero.

b) Find the probability of An; show your work.
P[An] =

2Note sup{∅} = −∞, so A1 = Ω.
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Name: STA 205: Prob & Meas Theory

Problem 4 (cont’d): Still An =
{

ω : ξn > sup1≤j<n ξj

}

.

c) It’s not hard to show by induction (but you don’t have to) that the
{An} are independent. Let Xj = 1Aj

and Rn =
∑n

j=1 Xj , the number of
new records among the first n observations. Show that Rn → ∞ almost
surely, i.e., that no record stands forever.

d) Let Tk = inf {n : Rn ≥ k} be the time of the kth record. Prove that
ETk = ∞ for all k ≥ 2, so some records can last a long time (Hint: Tk ≥ T2).
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Name: STA 205: Prob & Meas Theory

Problem 5: Let ξi
iid
∼ No(µ, σ2) be iid normal random variables with

the indicated mean and variance and let Sn ≡
∑n

i=1 ξi be their partial sum.
All martingales below are w.r.t. the filtration Fn := σ {ξ1, . . . , ξn}.

a) For what numbers α ∈ R, if any, is

M (1)
n := Sn − α n

a martingale? Show your work.

b) If µ = 0, for what β ∈ R, if any, is

M (2)
n := (Sn)2 − β n

a martingale? Show your work.
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Name: STA 205: Prob & Meas Theory

Problem 5 (cont’d): Still Sn ≡
∑n

i=1 ξi with ξi
iid
∼ No(µ, σ2).

c) For what numbers (α, β) ∈ R
2 do the random variables

M (3)
n := exp {αSn − β n}

form a martingale? Why?

d) For µ = 0 and σ2 = 1, and arbitrary a, b ∈ R+ use M
(3)
t to find the

best bound you can that the Gaussian random walk St ever3 crosses the line
a t + b:

P

[

sup
0≤t≤∞

(St − a t − b) ≥ 0
]

≤

3First bound the probability that it crosses the line before time T ; then take the limit
as T → ∞.
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Name: STA 205: Prob & Meas Theory

Problem 6: Let Ω = (0, 1] be the unit interval.

a) Show that the Borel sigma-algebra F = B(Ω) is countably generated,
i.e., find a countable collection {Fi ∈ F} for which F = σ {Fi}.

b) Let G = σ
{

{ω} : ω ∈ Ω
}

⊂ F be the σ-algebra generated by the
singletons. Show that G is not countably generated (perhaps a surprise,
since G ⊂ F), i.e., prove that there does not exist a countable collection
{Gi ∈ G} for which G = σ {Gi}.

c) Let P be an arbitrary (not necessarily absolutely-continuous w.r.t.
Lebesgue measure λ) probability measure on F. For each X ∈ L1(Ω,F,P),
describe precisely at least one version of Y = E[X | G] (extra credit for a
full description of all versions). Also describe the special case when P ≪ λ.
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Name Notation pdf/pmf Range Mean µ Variance σ2

Beta Be(α, β) f(x) = Γ(α+β)
Γ(α)Γ(β)x

α−1(1 − x)β−1 x ∈ (0, 1) α
α+β

αβ
(α+β)2(α+β+1)

Binomial Bi(n, p) f(x) =
(

n
x

)

pxq(n−x) x ∈ 0, · · · , n n p n p q (q = 1 − p)

Exponential Ex(λ) f(x) = λ e−λx x ∈ R+ 1/λ 1/λ2

Gamma Ga(α, λ) f(x) = λα

Γ(α)x
α−1 e−λx x ∈ R+ α/λ α/λ2

Geometric Ge(p) f(x) = p qx x ∈ Z+ q/p q/p2 (q = 1 − p)

f(y) = p qy−1 y ∈ {1, ...} 1/p q/p2 (y = x + 1)

HyperGeo. HG(n, A, B) f(x) =
(A

x)(
B

n−x)
(A+B

n )
x ∈ 0, · · · , n n P n P (1−P )N−n

N−1 (P = A
A+B )

Logistic Lo(µ, β) f(x) = e−(x−µ)/β

β[1+e−(x−µ)/β ]2
x ∈ R µ π2β2/3

Log Normal LN(µ, σ2) f(x) = 1

x
√

2πσ2
e−(log x−µ)2/2σ2

x ∈ R+ eµ+σ2/2 e2µ+σ2(

eσ2

−1
)

Neg. Binom. NB(α, p) f(x) =
(

x+α−1
x

)

pα qx x ∈ Z+ αq/p αq/p2 (q = 1 − p)

f(y) =
(

y−1
y−α

)

pα qy−α y ∈ {α, ...} α/p αq/p2 (y = x + α)

Normal No(µ, σ2) f(x) = 1
√

2πσ2
e−(x−µ)2/2σ2

x ∈ R µ σ2

Pareto Pa(α, ǫ) f(x) = α ǫα/xα+1 x ∈ (ǫ,∞) ǫ α
α−1

ǫ2α
(α−1)2(α−2)

Poisson Po(λ) f(x) = λx

x! e
−λ x ∈ Z+ λ λ

Snedecor F F (ν1, ν2) f(x) =
Γ(

ν1+ν2
2 )(ν1/ν2)ν1/2

Γ(
ν1
2 )Γ(

ν2
2 )

× x ∈ R+
ν2

ν2−2

(

ν2

ν2−2

)2
2(ν1+ν2−2)

ν1(ν2−4)

x
ν1−2

2

[

1 + ν1

ν2
x
]

−
ν1+ν2

2

Student t t(ν) f(x) =
Γ( ν+1

2 )

Γ( ν
2 )

√

πν
[1 + x2/ν]−(ν+1)/2 x ∈ R 0 ν/(ν − 2)

Uniform Un(a, b) f(x) = 1
b−a x ∈ (a, b) a+b

2
(b−a)2

12

Weibull We(α, β) f(x) = αβ xα−1 e−β xα

x ∈ R+
Γ(1+α−1)

β1/α

Γ(1+2/α)−Γ2(1+1/α)

β2/α


