Midterm Examination II

STA 711: Probability & Measure Theory

Thursday, 2012 Nov 15, 11:45 am - 1:00pm

This is a closed-book examination. You may use a single sheet of prepared notes, if you wish, but you may not share materials. If a question seems ambiguous or confusing, *please* ask me to clarify it.

Unless a problem states otherwise, you must **show** your **work**. There are blank worksheets and a pdf/pmf sheet at the end of the test. It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find. Good luck.

1.	/20
2.	/20
3.	/20
4.	/20
5.	/20
Total:	/100

Problem 1. Let $\Omega = \mathbb{R}_+$ with Borel sets $\mathcal{F} = \mathcal{B}(\mathbb{R}_+)$ and probability measure

$$\mathsf{P}[A] = \int_{A} e^{-\omega} \, d\omega$$

for $A \in \mathcal{F}$. For $n \in \mathbb{N}_0 = \{0, 1, 2, ...\}$ set $X_n(\omega) \equiv \omega^n$.

a) (6) Find (explicitly, in closed form— simplify) the bound that a direct application of Markov's inequality¹ gives for

$$\mathsf{P}[X_3 \ge 8] \le$$

b) (6) Find (in closed form— *simplify*) the exact probability $P[X_3 \ge 8] =$

c) (8) Set $Z \equiv \sum_{0 \le n < \infty} X_n/n!$. Evaluate $Z(\omega)$ explicitly and find $\mathsf{E}[Z^p]$ for each p > 0:

¹You can compute $\mathsf{E}X_n$ explicitly, using the Gamma or factorial functions.

Problem 2: Let $\{X_i, Y_i : i \in \mathbb{N}\}$ be iid with the standard exponential $\mathsf{Ex}(1)$ distribution². Set $Z_i \equiv (X_i - Y_i)$ and $S_n \equiv \sum_{1 \leq i \leq n} Z_i$.

a) (5) Find the characteristic function for S_n :³ $\phi_n(\omega) \equiv \mathsf{E}e^{i\omega S_n} =$

b) (5) Find the mean and variance of S_n by any method you wish (but show your work or explain your answer):

 $\mu_n \equiv \mathsf{E}S_n = \underline{\qquad} \sigma_n^2 \equiv \mathsf{E}(S_n - \mu_n)^2 = \underline{\qquad}$

²A sheet of information about common distributions is at the back of this exam. ³Suggestion: First find the ch.f. for X_1 ; then for $-Y_1$; then for Z_1 ; then for S_n .

Problem 2 (cont'd):

c) (5) Find the indicated limits for $\omega \in \mathbb{R}$ as $n \to \infty$:

 $\phi_n(\omega/n) \rightarrow$ _____

 $S_n/n \Rightarrow$

d) (5) Find the indicated limits for $\omega \in \mathbb{R}$ as $n \to \infty$: $\phi_n(\omega/\sqrt{n}) \rightarrow ____ S_n/\sqrt{n} \Rightarrow ___$ **Problem 3**: Let $\{X_n\}$ be independent real-valued random variables on a probability space $(\Omega, \mathcal{F}, \mathsf{P})$ for $n \in \mathbb{N}$, with a common *continuous* distribution. Call X_n a "record" if $X_n > \max\{X_j : 1 \le j < n\}$ (X_1 is always a record), and set:

$$\zeta_n \equiv \begin{cases} 1 & X_n \text{ is a record} \\ 0 & X_n \text{ is not a record.} \end{cases}$$

a) (5) Find⁴ $\mathsf{E}[\zeta_n] = \mathsf{P}[X_n \text{ is a record}] = _$

b) (5) Are $\{\zeta_2, \zeta_3\}$ independent? \bigcirc Yes \bigcirc No Why?⁴

⁴For parts a) b) c) of this problem it is only the *order* of the $\{X_n\}$ that matter, not their specific values. What *are* the possible orders of, say, X_1, X_2, X_3 ? What are their probabilities? Recall that they are iid with a continuous distribution. Symmetry helps.

Problem 3 (cont'd):

c) (5) Let $Z_n \equiv \sum_{j=1}^n \zeta_j$ be the number of records among the first *n* observations. Prove $Z_n/n \to 0$ in L_1 (for 4pts) and *a.s.* (for 1 pt).

d) (5) Which of the preceding answers in this Problem 3 would change if the common distribution of $\{X_n\}$ were not continuous? Give an example to illustrate.⁵ Circle the ones that *would* change: a) b) c) and explain:

⁵Suggestion: consider iid Bernoulli $\{X_n\}$ with p = 1/2.

Problem 4: Let X be a discrete-valued random variable with pmf $p_n = P[X = a_n]$ for some $\{a_n\} \subset \mathbb{R}, \{p_n\} \subset \mathbb{R}_+$ s.t. $\sum_{n=1}^{\infty} p_n = 1$ and let Y be an absolutely-continuous real valued random variable with pdf g(y).

a) (4) Exactly what does it *mean* for X and Y to be independent? Give either the definition or a sufficient criterion.

b) (4) Give an expression (it should involve $\{a_n\}, \{p_n\}$, and g) for the indicated expectation, for a bounded measurable $h : \mathbb{R}^2 \to \mathbb{R}$: $\mathsf{E}[h(X,Y)] =$

c) (6) If X and Y are independent, is their sum $Z \equiv X + Y \bigcirc discrete$, $\bigcirc absolutely \ continuous$, or $\bigcirc \ can't \ tell$?? If discrete, give the pmf p(z); if absolutely continuous, give the pdf f(z); if this can't be determined, explain.

d) (6) Give the exact conditions on $\{a_n\}$, $\{p_n\}$, and g needed to ensure that $X \in L_2$ and $Y \in L_2$.

Problem 5: True or false? Circle one; each answer is 2 points. No explanations are needed, but you can give one if you think the question is ambiguous or tricky (no tricks are intended). All random variables are real.

a) T F Lebesgue's dominated convergence theorem implies that $\int_0^1 \sin(nx) dx \to 0$ as $n \to \infty$.

- b) T F Jensen's Inequality implies that $E(X^2) \ge (EX)^2$ for $X \in L_1$.
- c) T F For any r.v. Y and number a > 0, $\mathsf{P}[Y > a] \le \mathsf{E}[Y^2]/a^2$.
- d) T F For any sequence of random variables $\{X_n\} \subset L_1(\Omega, \mathcal{F}, \mathsf{P})$,

$$\mathsf{E}\left[\sum_{n=1}^{\infty} X_n\right] = \sum_{n=1}^{\infty} [\mathsf{E}X_n].$$

e) **T** F For any random variables $\{X_{\alpha}\}, \{\cos(X_{\alpha})\}$ is UI.

f) **T** F Let X have the geometric distribution with $\mathsf{P}[X = k] = 2^{-k-1}$ for $k \in \mathbb{N}_0 = \{0, 1, 2, ...\}$. Then $\mathsf{P}[X \text{ is odd}] \ge 1/2$.

g) T F Three σ -fields $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$ are independent if and only if $\mathsf{P}[F_i \cap F_j] = \mathsf{P}[F_i] \mathsf{P}[F_j]$ for every $F_i \in \mathcal{F}_i$, for $i, j \in \{1, 2, 3\}$ with $i \neq j$.

h) $\mathsf{T} \mathsf{F}$ Random variables X and Y are independent if and only if $\mathsf{E}[f(X) \cdot g(Y)] = \mathsf{E}[f(X)] \cdot \mathsf{E}[g(Y)]$ for all bounded Borel functions f(x), g(y).

i) T F If $\{X_n\}$ is UI then for some constant B > 0 each $||X_n||_1 \le B$.

j) T F If X_n is absolutely continuous with pdf $f_n(x)$ and if X_n converges in distribution, then $f_n(x)$ converges as $n \to \infty$ to the pdf f(x) of the limiting distribution, for every x where f(x) is continuous.

7

Blank Worksheet

Name: _

Another Blank Worksheet

Name	Notation	$\mathbf{pdf}/\mathbf{pmf}$	Range	$\mathbf{Mean}\ \mu$	Variance σ^2	
Beta	$Be(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	$x \in (0,1)$	$\frac{\alpha}{\alpha+\beta}$	$rac{lphaeta}{(lpha+eta)^2(lpha+eta+1)}$	
Binomial	Bi(n,p)	$f(x) = \binom{n}{x} p^{x} q^{(n-x)}$	$x \in 0, \cdots, n$	np	npq	(q = 1 - p)
Exponential	$Ex(\lambda)$	$f(x) = \lambda e^{-\lambda x}$	$x \in \mathbb{R}_+$	$1/\lambda$	$1/\lambda^2$	
Gamma	$Ga(\alpha,\lambda)$	$f(x) = \frac{\lambda^{lpha}}{\Gamma(lpha)} x^{lpha - 1} e^{-\lambda x}$	$x \in \mathbb{R}_+$	$lpha/\lambda$	$lpha/\lambda^2$	
Geometric	Ge(p)	$f(x) = p q^x$	$x \in \mathbb{N}_0$	q/p	q/p^2	(q = 1 - p)
		$f(y) = p q^{y-1}$	$y \in \{1, \ldots\}$	1/p	q/p^2	(y = x + 1)
HyperGeo.	HG(n, A, B)	$f(x) = \frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	n P	$n P (1-P) \frac{N-n}{N-1}$	$(P = \frac{A}{A+B})$
Logistic	$Lo(\mu,\beta)$	$f(x) = rac{e^{-(x-\mu)/eta}}{eta [1+e^{-(x-\mu)/eta}]^2}$	$x \in \mathbb{R}$	μ	$\pi^2 eta^2/3$	
Log Normal	$LN(\mu,\sigma^2)$	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}} e^{-(\log x - \mu)^2/2\sigma^2}$	$x \in \mathbb{R}_+$	$e^{\mu + \sigma^2/2}$	$e^{2\mu+\sigma^2} \left(e^{\sigma^2} - 1\right)$	
Neg. Binom.	$NB(\alpha,p)$	$f(x) = {\binom{x+\alpha-1}{x}}p^{\alpha} q^x$	$x \in \mathbb{N}_0$	lpha q/p	$lpha q/p^2$	(q = 1 - p)
		$f(y) = {y-1 \choose y-lpha} p^{lpha} q^{y-lpha}$	$y\in\{\alpha,\ldots\}$	lpha/p	$lpha q/p^2$	$(y = x + \alpha)$
Normal	$No(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x-\mu)^2/2\sigma^2}$	$x \in \mathbb{R}$	μ	σ^2	
Pareto	$Pa(\alpha,\epsilon)$	$f(x) = \alpha \epsilon^{\alpha} / x^{\alpha + 1}$	$x \in (\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha - 1}$	$rac{\epsilon^2 lpha}{(lpha-1)^2(lpha-2)}$	
Poisson	$Po(\lambda)$	$f(x) = \frac{\lambda^x}{x!}e^{-\lambda}$	$x \in \mathbb{N}_0$	λ	λ	
${\bf Snedecor}\ F$	$F(u_1, u_2)$	$f(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})(\nu_1 / \nu_2)^{\nu_1 / 2}}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \times$	$x \in \mathbb{R}_+$	$\frac{\nu_2}{\nu_2-2}$	$\left(\frac{\nu_2}{\nu_2 - 2}\right)^2 \frac{2(\nu_1 + \nu_2 - 2)}{\nu_1(\nu_2 - 4)}$	
		$x^{\frac{\nu_1-2}{2}} \left[1+\frac{\nu_1}{\nu_2}x\right]^{-\frac{\nu_1+\nu_2}{2}}$				
Student t	t(u)	$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2}$	$x \in \mathbb{R}$	0	u/(u-2)	
Uniform	Un(a,b)	$f(x) = \frac{1}{b-a}$	$x \in (a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
Weibull	$We(\alpha,\lambda)$	$f(x) = \alpha \lambda^{\alpha} x^{\alpha - 1} e^{-(\lambda x)^{\alpha}}$	$x \in \mathbb{R}_+$	$\frac{\Gamma(1+lpha^{-1})}{\lambda}$	$rac{\Gamma(1+2/lpha)-\Gamma^2(1+1/lpha)}{\lambda^2}$	