Sta 711: Homework 2

σ-Algebras and partitions.

Fields and σ-fields generated by partitions (finite or countable collections of disjoint events $\Lambda_j \in \mathcal{F}$ with $\cup \Lambda_j = \Omega$), and probability assignments on them, are especially easy to describe.

1. Let $\{A, B, C\} \subset \mathcal{F}$ be three events in a probability space (Ω, \mathcal{F}, P), not necessarily non-empty or disjoint. Enumerate all possible elements of the partition $\mathcal{P} = \mathcal{P}(A, B, C)$ generated by these events (i.e., the smallest partition for which $\{A, B, C\} \subset \sigma(\mathcal{P})$). How many distinct nonempty elements does \mathcal{P} have, at most? How many, at minimum?

2. How many distinct elements does the σ-algebra $\sigma(\mathcal{P})$ contain, at most? At minimum? Describe them in words (don’t list them).

3. Let’s further assume that the events A, B, C are disjoint and $\Omega = A \cup B \cup C$, with probabilities $P(A) = 0.6$ and $P(B) = 0.3$. Calculate the probability of every event in $\sigma(A, B, C)$.

Null sets.

4. Let $\{A_n, n \in \mathbb{N}\}$ be events with $P(A_n) = 1$. Prove that $P(\cap_{n=1}^{\infty} A_n) = 1$.

5. Now consider uncountably many events $\{B_\alpha\}$, all with $P(B_\alpha) = 0$. Does it follow necessarily that $P(\cup_\alpha B_\alpha) = 0$? Give a proof or a counter example.

6. Let $\{C_k\}$ be a collection of events such that $\sum_{k=1}^{n} P(C_k) > n - 1$ for some $n \in \mathbb{N}$. Show that $P(\cap_{k=1}^{n} C_k) > 0$.

Distribution functions and continuity.

7. Give an example of a real-valued function on \mathbb{R} which is continuous, but not uniformly continuous.

8. Let G be a continuous distribution function on \mathbb{R}. Show that G is in fact uniformly continuous. Hint: Consider points $\{x_i\}$ for which $G(x_i) = i/n$ for $1 \leq i < n$. Are these $\{x_i\}$ determined uniquely? Does that matter?

9. Show that any distribution function F on \mathbb{R} can have at most countably many discontinuities. Hint: Consider the open intervals $(F(x^-), F(x))$ for discontinuity points x.

1
π- & λ- systems.

10. Consider the following collection of subsets of the real line:

\[B = \{(-\infty, b] : b \in \mathbb{R}\} \]

(a) Show that \(B \) is a π-system, but not a λ system.

(b) What is the λ-system generated by \(B \)? Why?

11. Consider the following collections of subsets of the unit square \(\Omega = (0,1]^2 \subset \mathbb{R}^2 \):

\[\mathcal{A} = \{(a,b] \times (c,d] : 0 \leq a \leq b \leq 1, \ 0 \leq c \leq d \leq 1\} \]

(a) Is \(\mathcal{A} \) a π-system? Why or why not?

(b) Is \(\mathcal{A} \) a λ-system? Why or why not?

π - systems and fields.

Let \(\mathcal{C} \) be a non-empty collection of subsets of a space \(\Omega \).

12. Let \(\mathcal{F}(\mathcal{C}) \) be the smallest field containing \(\mathcal{C} \). Show that for each \(B \in \mathcal{F}(\mathcal{C}) \) there exists a finite subcollection \(\mathcal{C}' \subseteq \mathcal{C} \) for which \(B \in \mathcal{F}(\mathcal{C}') \). Note \(\mathcal{C}' \) may depend on \(B \).

13. Show that the smallest field containing \(\mathcal{C} \) consists precisely of sets of the form

\[\mathcal{F}(\mathcal{C}) = \{B : B = \bigcup_{i=1}^{m} B_i, \ B_i = \bigcap_{j=1}^{n_i} A_{ij} \text{ for some } m \in \mathbb{N}, \ \{n_i\} \subset \mathbb{N}\} \]

where for each index pair \((i, j)\), either \(A_{ij} \in \mathcal{C} \) or \(A_{ij}^c \in \mathcal{C} \), and where the \(m \) sets \(\{B_i\} \) are disjoint. Thus, we can represent the sets in \(\mathcal{F}(\mathcal{C}) \) explicitly (interestingly, it turns out to be impossible to do this for σ-fields).

14. Suppose that Show that if two probability measures \(\mathbf{P}_1, \mathbf{P}_2 \) agree on a π system \(\mathcal{C} \), then they must also agree on the field \(\mathcal{F}(\mathcal{C}) \) generated by \(\mathcal{C} \). Hint: Use Dynkin’s π-λ theorem, or part (13) and the inclusion-exclusion principle.

15. Find two probability measures \(\mathbf{P}_1, \mathbf{P}_2 \) on some set \(\Omega \) that agree on a collection of subsets \(\mathcal{C} \), but not on \(\mathcal{F}(\mathcal{C}) \). Obviously from (14) above \(\mathcal{C} \) cannot be a π-system. Hint: It’s enough to have \(\mathcal{C} = \{A, B\} \) with just two elements, on an outcome space \(\Omega \) with just four points. Would three points be enough?