Sta 711: Homework #4

Expectation

- 1. Let $X := (X_1, X_2)$ be distributed uniformly over the triangle in \mathbb{R}^2 with vertices $\{(-1, 0), (1, 0), (0, 1)\}$. Compute $\mathsf{E}(X_1 + X_2)$.
- 2. Let $X \ge 0$ be a random variable on $(\Omega, \mathcal{F}, \mathsf{P})$ and, for $n \in \mathbb{N}$, set

$$X_n(\omega) \equiv \min\left(2^n, 2^{-n} \lfloor 2^n X(\omega) \rfloor\right)$$

Prove that X_n is simple and $X_n \nearrow X$. Note you must show *both* monotonicity and convergence. For $\omega \in \Omega$ and $\epsilon > 0$, how big must n be to ensure $|X - X_n| < \epsilon$?

3. Suppose $X \in L_1(\Omega, \mathcal{F}, \mathsf{P})$, *i.e.*, $\mathsf{E}|X| < \infty$. Show that

$$\int_{|X|>n} X d\mathsf{P} \to 0 \qquad \text{as} \quad n \to \infty.$$

4. Let $\{A_n\}$ denote a sequence of events such that $\mathsf{P}(A_n) \to 0$ as $n \to \infty$ and let $X \in L_1$. Show that

$$\int_{A_n} X d\mathsf{P} \to 0$$

5. Let $X \in L_1$, and let A be an event. Show that

$$\int_{A} |X| d\mathsf{P} = 0 \qquad \text{iff} \qquad \mathsf{P}(A \cap [|X| > 0]) = 0$$

6. Fix a probability space $(\Omega, \mathcal{F}, \mathsf{P})$ and define a distance measure d on \mathcal{F} by $d(A, B) \equiv \mathsf{P}(A\Delta B)$ where (as usual) $A\Delta B \equiv (A \setminus B) \cup (B \setminus A)$ denotes the symmetric difference. Show that, if $\{A_n\} \subset \mathcal{F}$ and $A \in \mathcal{F}$ satisfy $d(A_n, A) \to 0$, then

$$\int_{A_n} X d\mathsf{P} \to \int_A X d\mathsf{P}$$

for every $X \in L_1(\Omega, \mathcal{F}, \mathsf{P})$.

Convergence Theorems

7. Let $X \ge 0$ be a non-negative random variable. Define sequences of random variables X_n and of extended real numbers $0 \le S_n \le \infty$ for positive integers $n \in \mathbb{N}$ by:

$$X_n \equiv \sum_{k=0}^{\infty} \frac{k}{2^n} \mathbf{1}_{\{k < 2^n X \le k+1\}} \qquad S_n \equiv \mathsf{E}X_n = \sum_{k=0}^{\infty} \frac{k}{2^n} \mathsf{P}\left\{\frac{k}{2^n} < X \le \frac{k+1}{2^n}\right\}$$

Is X_n "simple"? What is $\lim_{n\to\infty} S_n$? Justify your answers.

8. Define a sequence of random variables on $(\Omega, \mathcal{F}, \mathsf{P}) = ((0, 1], \mathcal{B}, \lambda)$ by

$$X_n \equiv \frac{n}{\log n} \mathbf{1}_{(0,\frac{1}{n}]} \qquad n \in \mathbb{N}.$$

Show that $\mathsf{P}[X_n \to 0] = 1$, and that $\mathsf{E}(X_n) \to 0$. Also show that the Dominated Convergence Theorem does not apply to this example. Why?

9. Let $\{Y_n\}$ be a sequence of random variables for $n \in \mathbb{N}$ with

$$\mathsf{P}(Y_n = \pm n^3) = \frac{1}{2n^2}, \qquad \mathsf{P}(Y_n = 0) = 1 - \frac{1}{n^2}$$

Use the Borel-Cantelli lemma to show that $\mathsf{P}[Y_n \to 0] = 1$. Compute $\lim_{n\to\infty} \mathsf{E}(Y_n)$. Is the Dominated Convergence Theorem applicable? Why or why not?

10. Let $\{X_n\}, X$ be random variables with $0 \le X_n \to X$. If $\sup_n \mathsf{E}(X_n) \le K < \infty$, show that $X \in L_1$ and $\mathsf{E}(X) \le K$. Does $X_n \to X$ in L_1 ?

Domination

11. Let $\{X_n\}$ be a sequence of random variables. Show that

$$\mathsf{E}\left(\sup_{n\in\mathbb{N}}|X_n|\right)<\infty\tag{1}$$

if and only if there exists a random variable $0 \leq Y \in L_1$ such that

$$\mathsf{P}(|X_n| \le Y) = 1, \qquad \forall n \in \mathbb{N}.$$

Thus, (1) is exactly equivalent to domination in Lebesgue's sense.

12. Does the condition

$$\sup_{n\in\mathbb{N}}\mathsf{E}\left(|X_n|\right)<\infty\tag{2}$$

imply (1)? Or is it implied by (1)? For each direction $(1 \Rightarrow 2 \text{ and } 2 \Rightarrow 1)$, give either a proof or a counter-example.