Sta 711 : Homework 5

1. Independence.
 (a) Let \(\{B_i\} \) be independent events. For \(n \in \mathbb{N} \) show that
 \[
 P \left(\bigcup_{i=1}^{n} B_i \right) = 1 - \prod_{i=1}^{n} [1 - P(B_i)] \geq 1 - \exp \left\{ - \sum_{i=1}^{n} P(B_i) \right\}
 \]
 (b) If \(\{A_n, n \in \mathbb{N}\} \) is a sequence of events such that
 \[
 P(A_n \cap A_m) = P(A_n)P(A_m) \quad \forall n, m \in \mathbb{N}, \ n \neq m,
 \]
 does it follow that the events \(\{A_n\} \) are independent? Give a proof or counterexample.
 (c) Let \(Y \) be a random variable. Show that \(Y \) is independent of itself if and only if, for some constant \(c \in \mathbb{R} \), \(P[Y = c] = 1 \).
 Let \(f : \mathbb{R} \to \mathbb{R} \) be Borel measurable, and \(X \) any random variable. Can \(f(X) \) and \(X \) be independent? Explain your answer.
 (d) Give an example to show that an event \(A \in \mathcal{F} \) may be independent of each \(B \)
 in some collection \(\mathcal{C} \subset \mathcal{F} \) of events, but not independent of \(\sigma(\mathcal{C}) \). Prove this is impossible if \(\mathcal{C} \) is a \(\pi \)-system (i.e., in that case \(A \) must be independent of \(\sigma(\mathcal{C}) \)).
 (e) Give a simple example to show that two random variables on the same space
 \((\Omega, \mathcal{F})\) may be independent according to one probability measure \(P_1 \) but dependent with respect to another \(P_2 \).

2. Borel Cantelli.
 (a) Let \(\{X_n\} \) be a sequence of Bernoulli random variables with
 \[
 P(X_n = 1) = n^{-p} \quad P(X_n = 0) = 1 - n^{-p}
 \]
 for some \(p > 0 \). For \(p = 2 \) show that the partial sum
 \[
 S_n := \sum_{k=1}^{n} X_k
 \]
 converges almost-surely, whether or not the \(\{X_n\} \) are independent. If the \(\{X_n\} \)
 are independent, for which \(p > 0 \), does \(S_n \) converge? Why?
 (b) Dane tosses a heavily biased coin repeatedly, with independent outcomes. He is
 convinced that if he chooses the probability of heads \(p \) to be small enough (say, \(p \approx 10^{-6} \)), then only finitely-many heads will ever appear. Is Dane right? Justify your answer.
(c) Let \(\{X_n\} \) be an iid sequence of random variables with a nondegenerate distribution (i.e., not concentrated on a single point). Show that

\[
P[\omega : X_n(\omega) \text{ converges}] = 0
\]

(d) Use the Borel-Cantelli lemma to prove that for any sequence of real-valued random variables \(\{X_n\} \), there exists constants \(c_n \to \infty \) such that

\[
P\left(\lim_{n \to \infty} \frac{X_n}{c_n} = 0 \right) = 1.
\]

Give a careful description of how you choose \(c_n \). Find a suitable sequence \(\{c_n\} \)
explicitly for an iid sequence \(\{X_n\} \overset{\text{iid}}{\sim} \text{Ex}(1) \) of unit-rate exponentially-distributed random variables to ensure that \(X_n/c_n \to 0 \) almost surely.

(a) Suppose \(\{A_n, n \in \mathbb{N}\} \) are independent events satisfying \(\mathbb{P}(A_n) < 1, \forall n \in \mathbb{N} \). Show that \(\mathbb{P}(\bigcap_{n=1}^{\infty} A_n) = 1 \) if and only if \(\mathbb{P}(A_n \text{ i.o.}) = 1 \) (“i.o.” means “infinitely often”, so the question concerns \(\limsup A_n \)). Give an example to show that the condition \(\mathbb{P}(A_n) < 1 \) cannot be dropped.

(b) Suppose \(\{A_n\} \) is a sequence of events. If \(\mathbb{P}(A_n) \to 1 \) as \(n \to \infty \), prove that there exists a subsequence \(\{n_k\} \) tending to infinity such that \(\mathbb{P}(\cap_k A_{n_k}) > 0 \).

(c) Let \(A_n \) be a sequence of events. If there exists \(\epsilon > 0 \) such that \(\mathbb{P}(A_n) \geq \epsilon \) for all \(n \in \mathbb{N} \), does it follow that there exists a subsequence \(\{n_k\} \) tending to infinity such that \(\mathbb{P}(\cap_k A_{n_k}) > 0 \)? Why or why not?

(d) Let \(\{X_n\} \) be non-negative iid random variables, with tail \(\sigma \)-field

\[
\mathcal{T} \equiv \bigcap_n \mathcal{F}_n', \quad \mathcal{F}_n' \equiv \sigma\{X_m : m \geq n\}
\]

Is the event

\[
E = \{\text{There exists } \epsilon > 0 \text{ such that } X_n \geq n\epsilon \text{ for infinitely-many } n\}
\]

\[
= \bigcup_{\epsilon > 0} \bigcap_{m \geq 1} \bigcup_{n \geq m} \{\omega : X_n(\omega) \geq n\epsilon\}
\]

in \(\mathcal{T} \)? Prove or disprove it.

Express the probability \(\mathbb{P}[E] \) in terms of the random variables’ common distribution—for example, using their common CDF \(F(x) \equiv \mathbb{P}[X_n \leq x] \) or moments \(\mathbb{E}[X_n^p] \) for some \(p \in \mathbb{R} \).