Sta 711: Homework 7

Fubini’s Theorem

1. Let \(X \geq 0 \) be a positive random variable and \(\alpha > 0 \). Show that

\[
E(X^\alpha) = \alpha \int_0^\infty t^{\alpha-1} P(X > t) dt.
\]

Note that the distribution \(\mu(dx) \) of \(X \) need not be absolutely continuous. Where did you use Fubini’s theorem?

Uniform Integrability (UI)

2. Let \(\{X_n\} \) be an iid sequence of \(L_1 \) random variables. Set \(S_n = \sum_{i=1}^n X_i \). Show that the sequence of random variables \(\{Y_n\} \) defined by \(Y_n = S_n/n \) is UI.

3. Let \(X_n \sim \text{No}(0, \sigma_n^2) \). Find a simple (easily verifiable) condition on \(\{\sigma_n^2\} \) such that \(\{X_n\} \) is UI.

4. If \(\{X_n\} \) and \(\{Y_n\} \) are UI, show that so is \(\{X_n + Y_n\} \).

5. Let \(\phi(x) \) be a function which grows faster than \(x \) at infinity, i.e., \(\phi(x)/x \rightarrow \infty \) as \(x \rightarrow \infty \). Let \(\mathcal{C} \) be a collection of random variables such that, for some fixed \(B < \infty \) and all \(Z \in \mathcal{C} \),

\[
E\left(\phi(|Z|)\right) \leq B.
\]

Show that \(\mathcal{C} \) is UI. Note: This implies any collection of random variables that is bounded in \(L_p \) for some \(p > 1 \) is UI.

Convergence Theorems Revisited

6. Let \(X \) be a non-negative real valued random variable. Show that:

 (a) \(\lim_{n \to \infty} nE(\frac{1}{X} 1_{[X > n]}) = 0. \)

 (b) \(\lim_{n \to \infty} n^{-1}E(\frac{1}{X} 1_{[X > n-1]}) = 0. \)

7. Let \(\{p_k\} \) be a probability mass function on \(\mathbb{N}_0 = \{0,1,...\} \) and define the generating function

\[
G(z) \equiv \sum_{k=0}^\infty p_k z^k \quad 0 \leq z \leq 1
\]
Use the Dominated Convergence Theorem to prove that

\[\frac{d}{dz} G(z) = \sum_{k=0}^{\infty} p_k k z^{k-1} \quad 0 \leq z < 1. \tag{1} \]

What is \(G(0) \)? \(G'(0) \)? \(G'(1) \)? How can you find each \(p_k \) explicitly from \(G(z) \)?

Extra Credit (+1pt):
Show that (1) also holds at \(z = 1 \), if we interpret \(\frac{d}{dz} G(z) \) as the left derivative \(G'(1-) \equiv \lim_{\epsilon \downarrow 0} [G(1) - G(1 - \epsilon)]/\epsilon \).