Sta 711: Homework 8

Uniform Integrability

1. True or false? Answer whether each of the following statements is true or false. If true, answer why; if false, give a simple counter example.

 (a) If \(\{X_n, n \in \mathbb{N}\} \) is a uniformly integrable (UI) collection of random variables, then \(X_n \in L_1 \) for each \(n \).

 (b) Define a sequence \(\{X_n\} \) of random variables on the unit interval with Lebesgue measure, \((\Omega, \mathcal{F}, P) \) with \(\Omega = (0,1] \), \(\mathcal{F} = \mathcal{B} \), and \(P = \lambda \), by \(X_n \equiv \sqrt{n} I_{(0, \frac{1}{n})} \). Then \(\{X_n\} \) is UI.

 (c) Let \(\{X_n\} \) be a sequence of random variables for which \(e^{X_n} \) is uniformly bounded in \(L_1 \), i.e., satisfies \(E(e^{X_n}) \leq B \) for some \(B < \infty \) and all \(n \). Then \(\{X_n\} \) is UI.

 (d) Let \(\{X_n\} \) be a sequence of random variables that is uniformly bounded in \(L_1 \), i.e., satisfies \(E|X_n| \leq B \) for some \(B < \infty \) and all \(n \). Then \(\{X_n\} \) is UI.

Characteristic Functions

2. Let \(X \) be a random variable, and define

\[
\phi_X(\omega) \equiv E(e^{i\omega X}), \quad \omega \in \mathbb{R}
\]

Show that \(\phi_X(\omega) \) is uniformly continuous in \(\mathbb{R} \).

3. Find the characteristic functions of the following random variables:

 (a) \(W \equiv c^1 \) (The superscripts in (a)-(c) are footnote indicators, not exponents)

 (b) \(X \sim \text{Un}(a, b)^2 \)

 (c) \(Y \sim \text{Ga}(\alpha, \lambda)^3 \)

 (d) \(Z = (Y_1 + Y_2 + \cdots + Y_n)/n, \quad Y_j \overset{iid}{\sim} \text{Ga}(\alpha, \lambda) \)

What is the distribution of \(Z \)? What happens as \(n \to \infty \)?

4. The distribution of a random variable \(X \) is called infinitely divisible if, for every \(n \in \mathbb{N} \), there exist \(n \) iid random variables \(\{Y_i\} \) such that \(X \) has the same distribution as \(\sum_{i=1}^n Y_i \). Use characteristic functions to show that if \(X \sim \text{Po}(\lambda) \), then \(X \) is infinitely divisible.\(^4\)

\(^1\) A constant random variable with value \(c \in \mathbb{R} \)

\(^2\) Uniform, on the interval \((a, b) \subset \mathbb{R} \)

\(^3\) Gamma, with rate parameterization—with pdf \(f(y \mid \lambda) = \lambda^y y^{\alpha-1} e^{-\lambda y} / \Gamma(\alpha), y > 0 \).

\(^4\) Hint: If \(\{Y_i\} \) are independent with sum \(Y_n := \sum Y_i \), then \(\phi_{Y_n}(\omega) = \prod \phi_{Y_i}(\omega) \) for all \(\omega \in \mathbb{R} \).