Sta 711: Homework 8

Uniform Integrability

- 1. **True or false?** Answer whether each of the following statements is true or false. If true, answer why; if false, give a simple counter example.
 - (a) If $\{X_n, n \in \mathbb{N}\}$ is a uniformly integrable (UI) collection of random variables, then $X_n \in L_1$ for each n.
 - (b) Define a sequence $\{X_n\}$ of random variables on the unit interval with Lebesgue measure, (Ω, \mathcal{F}, P) with $\Omega = (0, 1]$, $\mathcal{F} = \mathcal{B}$, and $\mathsf{P} = \lambda$, by $X_n \equiv \sqrt{n} \mathbf{1}_{(0, \frac{1}{n}]}$. Then $\{X_n\}$ is UI.
 - (c) Let $\{X_n\}$ be a sequence of random variables for which $e^{|X_n|}$ is uniformly bounded in L_1 , *i.e.*, satisfies $\mathsf{E}e^{|X_n|} \leq B$ for some $B < \infty$ and all n. Then $\{X_n\}$ is UI.
 - (d) Let $\{X_n\}$ be a sequence of random variables that is uniformly bounded in L_1 , *i.e.*, satisfies $\mathsf{E}|X_n| \leq B$ for some $B < \infty$ and all n. Then $\{X_n\}$ is UI.

Characteristic Functions

2. Let X be a random variable, and define

$$\phi_X(\omega) \equiv \mathsf{E}(e^{i\omega X}), \qquad \omega \in \mathbb{R}$$

Show that $\phi_X(\omega)$ is uniformly continuous in \mathbb{R} .

- 3. Find the characteristic functions of the following random variables:
 - (a) $W \equiv c^1$ (The superscripts in (a)–(c) are footnote indicators, not exponents)
 - (b) $X \sim \mathsf{Un}(a,b)^2$
 - (c) $Y \sim \mathsf{Ga}(\alpha, \lambda)^3$
 - (d) $Z = (Y_1 + Y_2 + \dots + Y_n)/n, \quad Y_j \stackrel{\text{iid}}{\sim} \mathsf{Ga}(\alpha, \lambda)$

What is the distribution of Z? What happens as $n \to \infty$?

4. The distribution of a random variable X is called *infinitely divisible* if, for every $n \in \mathbb{N}$, there exist n iid random variables $\{Y_i\}$ such that X has the same distribution as $\sum_{i=1}^{n} Y_i$. Use characteristic functions to show that if $X \sim \mathsf{Po}(\lambda)$, then X is infinitely divisible.⁴

 $^{^1\}mathbf{A}$ constant random variable with value $c\in \mathbb{R}$

²Uniform, on the interval $(a, b) \subset \mathbb{R}$

³Gamma, with rate parameterization— with pdf $f(y \mid \lambda) = \lambda^{\alpha} y^{\alpha-1} e^{-\lambda y} / \Gamma(\alpha), y > 0.$

⁴Hint: If $\{Y_i\}$ are independent with sum $Y_+ := \sum Y_i$, then $\phi_{Y_+}(\omega) = \prod \phi_{Y_i}(\omega)$ for all $\omega \in \mathbb{R}$.