Final Examination

STA 711: Probability & Measure Theory

Wednesday, 2012 Dec 12, 9:00 am - 12:00 n

This is a closed-book examination. You may use a sheet of prepared notes, if you wish, but you may not share materials. If a question seems ambiguous or confusing, *please* ask me to clarify it.

Unless a problem states otherwise, you must **show** your **work**. There are blank worksheets and a pdf/pmf sheet at the end of the test. It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find. Good luck.

1.	/20	6.		/20
2.	/20	7.		/20
3.	/20	8.		/20
4.	/20	9.		/20
5.	/20	10.		/20
	/100			/100
Total:			/200	

Print Name:

Problem 1. Let \mathcal{A} be a collection of subsets of a nonempty set Ω such that

- a. $\Omega \in \mathcal{A}$
- b. $A, B \in \mathcal{A} \Rightarrow A \backslash B = A \cap B^c \in \mathcal{A}$.
- a) (8) Prove that A is a field.

b) (12) Let $\Omega = \{a, b, c, d\}$ and let $\mathcal{B} = \{B \subset \Omega : \#(B) \text{ is even}\}$, the sets with 0, 2, or 4 elements. Show that \mathcal{B} is a λ -system. Is it a field? $\Omega \subseteq \mathbb{C}$ Yes $\Omega \subseteq \mathbb{C}$ No Why?

Problem 2: For $0 let <math>\{X_i : i \in \mathbb{N}\} \stackrel{\text{iid}}{\sim} \mathsf{Ge}(p)$ be iid with the geometric probability distribution with probability mass function (pmf)

$$P[X_i = k] = pq^k, \quad k \in \mathbb{N}_0 \equiv \{0, 1, 2, \dots\}, \quad q \equiv (1 - p).$$

a) (8) Find¹ the pmf for $Y_n \equiv \max_{1 \le i \le n} X_i$:

b) (8) Find² the pmf for $Z_n \equiv \min_{1 \le i \le n} X_i$:

c) (4) Find the chf (Characteristic Function) for $S_n \equiv \sum_{1 \le i \le n} X_i$:

¹Suggestion: Find the CDFs for X_i and then for Y_n first.

²What's the probability that Z_n is greater than z?

Name: .

Problem 3: The random variables $\{X_i\}$ are all independent and all satisfy $\mathsf{E}[X_i^4] \leq 1.0$, but they may have different distributions. Let $S_n \equiv \sum_{i=1}^n X_i$ be their partial sum.

a) (8) Does it follow without any further assumptions that S_n/n converges almost surely? \bigcirc Yes \bigcirc No Give a proof or counter-example.

b) (8) If in addition we know $X_n \to 0$ in probability, for which (if any) $0 does it follow that <math>X_n \to 0$ in L_p ? Why?

c) (4) Give the best bound you can: (+1xc for showing it's best possible)

 $\mathsf{P}[X_1 \ge 2] \le \underline{\hspace{1cm}}$

Problem 4: Let $\Omega = \mathbb{R}_+ = [0, \infty)$ be the positive half-line, with Borel sets $\mathcal{F} = \mathcal{B}(\mathbb{R}_+)$ and probability measure P given by $\mathsf{P}(d\omega) = e^{-\omega} d\omega$ or, equivalently,

$$P[(a,b]] = e^{-a} - e^{-b}$$
 $0 \le a \le b < \infty$.

For each integer $n \in \mathbb{N} = \{1, 2, \cdots\}$ define a random variable on (Ω, \mathcal{F}) by

$$X_n(\omega) := \begin{cases} 0 & \text{if } \omega < n \\ 1 & \text{if } \omega \ge n \end{cases}$$

a) (4) Find the mean $m_n = \mathsf{E}[X_n]$ for each $n \in \mathbb{N}$ and the covariance $\Sigma_{mn} = \mathsf{E}[(X_m - m_m)(X_n - m_n)]$ for each $m \le n \in \mathbb{N}$:

$$m_n = \Sigma_{mn} =$$

b) (4) Give the probability distribution measure $\mu_n(\cdot)$ of X_n for each n:

Problem 4 (cont'd): As before, $\Omega = \mathbb{R}_+$, $\mathcal{F} = \mathcal{B}(\mathbb{R}_+)$, $P(d\omega) = e^{-\omega} d\omega$, and $X_n(\omega) := \mathbf{1}_{[n,\infty)}(\omega)$ for $n \in \mathbb{N}$ (see footnote³)

c) (4) For each fixed $n \in \mathbb{N}$ give the σ -algebra $\sigma(X_n)$ explicitly:

$$\sigma(X_n) = \left\{ \begin{array}{c} \\ \end{array} \right.$$

d) (4) Does the σ -algebra $\mathcal{G} = \sigma(X_1, X_2, ...)$ generated by all the X_n 's contain all the Borel sets in \mathbb{R}_+ ? \bigcirc Yes \bigcirc No If so, say why; if not, find a Borel set $B \in \mathcal{F}$ that is not in \mathcal{G} .

e) (4) Are X_1 and X_2 independent? \bigcirc Yes \bigcirc No Justify your answer.

³Recall that the *indicator* random variable $\mathbf{1}_A(\omega)$ is one if $\omega \in A$, otherwise zero.

Problem 5: As in Problem 4, $\Omega = \mathbb{R}_+$, $\mathcal{F} = \mathcal{B}(\mathbb{R}_+)$, $\mathsf{P}(d\omega) = e^{-\omega} d\omega$, and $X_n(\omega) := \mathbf{1}_{[n,\infty)}(\omega)$ for $n \in \mathbb{N}$.

a) (4) Prove that the partial sums $S_n := \sum_{j=1}^n X_j$ converge almost surely as $n \to \infty$ to some limiting random variable $S \equiv \sum_{j=1}^{\infty} X_j$.

b) (4) Do the partial sums $S_n := X_1 + \cdots + X_n$ converge to S in L_1 as $n \to \infty$? () Yes () No Justify your answer.

c) (4) Give the name⁴ and the mean of the probability distribution of the limit $S = \sum_{j=1}^{\infty} X_j$.

d) (8) Set $\mathcal{F}_n = \sigma\{X_1, \dots, X_n\}$, the σ -algebra generated by the first n of the X_k 's. Find the indicated conditional expectations:

$$\mathsf{E}[X_4 \mid \mathcal{F}_2] =$$

$$\mathsf{E}[S \mid \mathcal{F}_2] =$$

⁴Remember, there's a list of distributions with names and means at the back of this exam. Exactly what must ω be to make S=0? S=2? S=k?

Problem 6: Be specific for each of the following, leaving no parameters unspecified, but no need to prove convergence. For each part you may specify either the distributions themselves $\mu_n(dx)$, $\mu(dx)$ or random variables X_n , X with those distributions.

a) (8) Give an example of a sequence of discrete distributions that converge in distribution to an absolutely-continuous distribution.

b) (8) Give an example of a sequence of absolutely-continuous distributions that converge in distribution to a discrete distribution.

c) (4) Give an example of a distribution supported on only rational values (so $\mu_n(B) = 1$ for some closed set $B \subset \mathbb{Q}$) that converges to one supported on only irrational values (so $\mu(B) = 1$ for some closed $B \subset \mathbb{Q}^c$).

Problem 7: Let $\{X_j\}_{1 \leq j \leq 3}$ be independent random variables on $(\Omega, \mathcal{F}, \mathsf{P})$ representing the outcomes on three independent fair 6-sided dice.

a) (6) How many points must Ω have, at minimum? Why?

b) (6) Is is possible to find iid X_1, X_2, X_3 each uniform on $\{1, 2, 3, 4, 5, 6\}$ on the space $(\Omega, \mathcal{F}, \mathsf{P})$ with $\Omega = (0, 1]$ and $\mathsf{P} = d\omega$ Lebesgue measure on the Borel sets $\mathcal{F} = \mathcal{B}$? \bigcirc Yes \bigcirc No If so, give a possible version of $X_1 : \Omega \to \mathbb{R}$ (+1xc for all three, X_1, X_2, X_3); if not, why?

c) (8) Let $Y = X_1 + X_2$ and $Z = X_2 + X_3$. Find⁵: $E[Y \mid Z] =$

⁵Suggestion: First find $E[X_1 \mid X_2, X_3]$ and $E[X_2 \mid Z \equiv X_2 + X_3]$.

Problem 8: Let $X_j \stackrel{\text{iid}}{\sim} \mathsf{Po}(1)$ be independent random variables, all with the unit-mean Poisson distribution.

a) (8) Find the characteristic function $\phi(\omega) = \mathsf{E}\left[e^{i\omega X_j}\right]$ of X_j and the log chf $\psi(\omega) \equiv \log \phi(\omega)$.

b) (6) For numbers a > 0, find the log characteristic function $\psi_1(\omega)$ of $(X_j - 1)/a$.

c) (6) Let $S_n = X_1 + \cdots + X_n$ be the partial sum. Find a sequence $a_n > 0$ such that the log characteristic function $\psi_n(\omega)$ of $(S_n - n)/a_n$ converges to $-\omega^2/2$ for every ω , and explain what this says about the limiting probability distribution of S_n (i.e., about the Po(n) distribution for large n).

⁶Recall the Taylor series $e^x = 1 + x + x^2/2 + o(x^2) \approx 1 + x + x^2/2$ near $x \approx 0$.

Problem 9: The random variables X and Y have a distribution generated by the following mechanism. A fair coin is tossed; if it falls Heads, then X=Y=0; if it falls Tails, then X and Y are drawn independently from the standard normal $\operatorname{No}(0,1)$ distribution with CDF $\Phi(z) \equiv \int_{-\infty}^{z} e^{-t^2/2} dt/\sqrt{2\pi}$.

a) (4) Are X and Y independent? \bigcirc Yes \bigcirc No Why?

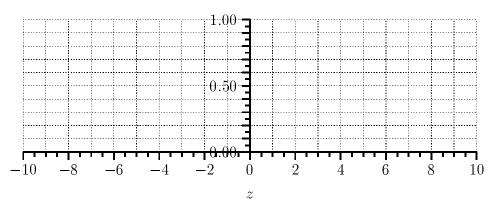
b) (4) Set $Z \equiv 3X + 4Y$. If the coin falls Tails (in which case $X, Y \stackrel{\text{iid}}{\sim} \text{No}(0,1)$), find the conditional CDF for Z (you may use $\Phi(\cdot)$ in your expression):

$$P[Z \le z \mid Tails] =$$

c) (6) Now find the unconditional CDF for Z = 3X + 4Y:

$$\mathsf{P}[Z \le z] = \left\{ \right.$$

and sketch a very very rough plot of it:



Fall 2012

Problem 9 (cont'd):

d) (6) Let \mathcal{G} be the σ -algebra generated by Z. Find the conditional expectation of X, given $\mathcal{G} = \sigma(Z)$:

$$\mathsf{E}[X \mid \mathcal{G}] = \underline{\hspace{1cm}}$$

Problem 10: Let $\{X_n > 0\}$ and X > 0 be positive random variables with $X_n \to X$ a.s. Choose True or False below; no need to explain (unless you can't resist). Each is 3pt, except g) (just 2pt, and difficult to get wrong).

- a) TF $\log(X_n) \to \log(X)$ in probability.
- b) TF $X_n \to X$ in L_2 if each $E[|X_n|^3] \le \pi$.
- c) TF $\log(X_n) \to \log(X)$ in L_1 if each $\mathsf{E}[|X_n|^3] \le \pi$.
- $\mathrm{d}) \quad \mathsf{T} \; \mathsf{F} \quad \limsup_{n \to \infty} \mathsf{E}[\log(1+X_n)] \geq \mathsf{E}[\log(1+X)].$
- e) TF $X \in L_2$ if, for some t > 0, $\mathsf{E}[\exp(t \cdot X)] < \infty$.
- f) TF $X \in L_2$ if, for some t < 0, $\mathsf{E}[\exp(t \cdot X)] < \infty$.
- g) TF The answer you chose for this question is T.

Name:	. STA	711:	Prob	&	Meas	Theory
-------	-------	------	------	---	------	--------

Blank Worksheet

Name:	_ STA	711:	Prob	&	Meas	Theory
-------	-------	------	-----------------------	---	------	--------

Another Blank Worksheet

Name	Notation	${f pdf/pmf}$	Range	Mean μ	Variance σ^2	
Beta	$Be(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	$x \in (0,1)$	$\frac{\alpha}{\alpha + \beta}$	$\frac{lphaeta}{(lpha+eta)^2(lpha+eta+1)}$	
Binomial	Bi(n,p)	$f(x) = \binom{n}{x} p^x q^{(n-x)}$	$x \in 0, \cdots, n$	np	$n\ p\ q$	(q=1-p)
${\bf Exponential}$	$Ex(\lambda)$	$f(x) = \lambda e^{-\lambda x}$	$x \in \mathbb{R}_+$	$1/\lambda$	$1/\lambda^2$	
Gamma	$Ga(\alpha,\lambda)$	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$	$x \in \mathbb{R}_+$	$lpha/\lambda$	$lpha/\lambda^2$	
${f Geometric}$	Ge(p)	$f(x) = p q^x$	$x \in \mathbb{Z}_+$	q/p	q/p^2	(q=1-p)
		$f(y) = p q^{y-1}$	$y \in \{1, \ldots\}$	1/p	q/p^2	(y = x + 1)
${\bf HyperGeo}.$	HG(n,A,B)	$f(x) = \frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	n P	$n P (1-P) \frac{N-n}{N-1}$	$(P = \frac{A}{A+B})$
${f Logistic}$	$Lo(\mu,\beta)$	$f(x) = \frac{e^{-(x-\mu)/\beta}}{\beta[1 + e^{-(x-\mu)/\beta}]^2}$	$x \in \mathbb{R}$	μ	$\pi^2 eta^2/3$	
Log Normal	$LN(\mu,\sigma^2)$	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}}e^{-(\log x - \mu)^2/2\sigma^2}$	$x \in \mathbb{R}_+$	$e^{\mu+\sigma^2/2}$	$e^{2\mu+\sigma^2}\left(e^{\sigma^2}-1\right)$	
Neg. Binom.	$NB(\alpha,p)$	$f(x) = {x+\alpha-1 \choose x} p^{\alpha} q^x$	$x \in \mathbb{Z}_+$	$\alpha q/p$	$lpha q/p^2$	(q=1-p)
		$f(y) = {y-1 \choose y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in \{\alpha, \ldots\}$	lpha/p	$lpha q/p^2$	$(y = x + \alpha)$
Normal	$No(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$	$x \in \mathbb{R}$	μ	σ^2	
Pareto	$Pa(\alpha,\epsilon)$	$f(x) = \alpha \epsilon^{\alpha} / x^{\alpha + 1}$	$x \in (\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha - 1}$	$\frac{\epsilon^2 \alpha}{(\alpha-1)^2(\alpha-2)}$	
Poisson	$Po(\lambda)$	$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_+$	λ	λ	
${\bf Snedecor}\ F$	$F(u_1, u_2)$	$f(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})(\nu_1/\nu_2)^{\nu_1/2}}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \times$	$x \in \mathbb{R}_+$	$\frac{\nu_2}{\nu_2-2}$	$\left(\frac{\nu_2}{\nu_2-2}\right)^2 \frac{2(\nu_1+\nu_2)}{\nu_1(\nu_2)}$	$\frac{(\nu_2-2)}{(2-4)}$
		$x^{\frac{\nu_1-2}{2}} \left[1 + \frac{\nu_1}{\nu_2} x\right]^{-\frac{\nu_1+\nu_2}{2}}$				
Student t	t(u)	$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2}$	$x \in \mathbb{R}$	0	u/(u-2)	
Uniform	Un(a,b)	$f(x) = \frac{1}{b-a}$	$x \in (a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
Weibull	We(lpha,eta)	$f(x) = \alpha \beta x^{\alpha - 1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_+$	$\frac{\Gamma(1+\alpha^{-1})}{\beta^{1/\alpha}}$	$\frac{\Gamma(1+2/\alpha)-\Gamma^2(1+1/\alpha)}{\beta^{2/\alpha}}$	