Midterm Examination II

STA 711: Probability & Measure Theory

Thursday, 2013 Nov 14, 11:45 am - 1:00 pm

This is a closed-book exam. You may use a single sheet of prepared notes, if you wish, but you may not share materials. If a question seems ambiguous or confusing, *please* ask me to clarify it.

Unless a problem states otherwise, you must **show** your **work**. There are blank worksheets at the end of the test for this. It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find. For full credit, give answers in **closed form** (no unevaluated sums, integrals, maxima, etc.) where possible and **simplify**.

Good luck!

1.	/20
2.	/20
3.	/20
4.	/20
5.	/20
Total:	/100

Print Name:

Problem 1: Let $\{X_i\} \subset L_2(\Omega, \mathcal{F}, \mathsf{P})$ be an uncorrelated sequence of mean zero random variables that is uniformly bounded in L_2 , *i.e.*,

$$(\forall i \neq j) \quad \mathsf{E}[X_i \, X_j] = 0 \qquad \qquad (\exists c < \infty) (\forall i) \quad \mathsf{E}|X_i|^2 \leq c$$

Show that for any $\alpha > \frac{1}{2}$

$$n^{-\alpha} \sum_{j=1}^{n} X_j \to 0$$

in L_2 as $n \to \infty$ and, in particular, $\bar{X}_n \to 0$ in L_2 .

Problem 2: Let $\Omega = \mathbb{R}_+$ with Borel sets $\mathcal{F} = \mathcal{B}(\mathbb{R}_+)$ and probability measure

$$\mathsf{P}[A] := \int_A e^{-\omega} \, d\omega$$

for $A \in \mathcal{F}$. For $n \in \mathbb{Z}_+ := \{0, 1, 2, \dots\}$ set $X_n(\omega) := 2^n \mathbf{1}_{[n,\infty)}(\omega)$.

a) (6) Find the L_p norm of X_n for each $1 \le p \le \infty$: $||X_n||_p =$

b) (6) In which sense(s) does $X_n \to 0$ as $n \to \infty$? Justify each answer. $\bigcirc a.s. \bigcirc pr. \bigcirc L_1 \bigcirc L_2 \bigcirc L_\infty \bigcirc$ in dist.

c) (8) Set $Z := \sum_{0 \le n < \infty} X_n$. Evaluate $Z(\omega)$ explicitly and find its mean. For full credit, answer must be closed-form and you must **simplify**.

$$Z(\omega) =$$

$$\mathsf{E}[Z] =$$

Problem 3: Let $\Omega := \{1, 2, 3, 4, 5\}$, $\mathcal{F} := 2^{\Omega}$, and $\mathsf{P}(A) := \sum_{\omega \in A} \frac{\omega}{15}$ for $A \in \mathcal{F}$. Set $X(\omega) := \omega$ for $\omega \in \Omega$ and $B := \{1, 2\} \in \mathcal{F}$.

a) (2) Find:
$$E[X] =$$

$$P[B] =$$

b) (4) Find
$$Y_1 := \mathsf{E}[X \mid \mathcal{G}_1]$$
 for $\mathcal{G}_1 := \{\emptyset, B, B^c, \Omega\}$. $Y_1(\omega) =$

c) (4) Find
$$Y_2 := \mathsf{E}[X \mid \mathcal{G}_2]$$
 for $\mathcal{G}_2 := \{\emptyset, \Omega\}$. $Y_2(\omega) =$

Problem 3 (cont'd): Now let $\Omega = (0,1]$, $\mathcal{F} = \mathcal{B}(\Omega)$, and $P(A) := \int_A 2\omega \, d\omega$ for $A \in \mathcal{F}$. Let $X(\omega) := \omega$ and $Y(\omega) := \mathbf{1}_{\{\omega > 1/2\}}$.

d) (2) Find:
$$E[X] =$$

$$\mathsf{E}[Y] =$$

e) (4) Find
$$Y_3 := \mathsf{E}[X \mid Y]$$
: $Y_3(\omega) =$

f) (4) Find
$$Y_4 := \mathsf{E}[Y \mid X]$$
: $Y_4(\omega) =$

Problem 4: Let $\{X_i: i \in \mathbb{N}\}$ be iid with $\mathsf{P}[X_i = 1] = \mathsf{P}[X_i = -1] = 1/2$, and set $S_n := \sum_{1 \le i \le n} X_i$, the simple random walk on \mathbb{Z} .

- a) (6) Find the characteristic function for X_1 (Simplify!¹):
- $\phi_1(\omega) = \mathsf{E}e^{i\omega X_1} =$

b) (6) Find the characteristic function for S_n (Simplify!): $\phi_n(\omega) = \mathsf{E} e^{i\omega S_n} =$

¹Recall $e^{x+iy} = e^x [\cos y + i \sin y]$

Problem 4 (cont'd): Recall that $\{X_i\}$ are iid with $P[X_i = \pm 1] = 1/2$ and $S_n := \sum_{1 \le i \le n} X_i$.

c) (4) Use derivatives of the characteristic function for S_n to help you find the first two moments of S_n :

 $\mathsf{E}[S_n] = \underline{\hspace{2cm}} \mathsf{E}[S_n^2] = \underline{\hspace{2cm}}$

d) (4) Use a second-order Taylor series for $\psi_n(\omega) := \log \phi_n(\omega)$ to verify that $\phi_n(\omega/\sqrt{n}) \to \exp(-\omega^2/2)$ as $n \to \infty$. What does that say about the distribution of S_n/\sqrt{n} ?

Problem 5: True or false? Circle one; each answer is 2 points. No explanations are needed, but you can give one if you think the question is ambiguous or tricky. All random variables are real.

- a) TF Hölder's inequality says $||X+Y||_1 \le ||X||_p + ||Y||_q$ if $\frac{1}{p} + \frac{1}{q} = 1$.
- b) TF For any RV Y and any a > 0, t > 0, $P[Y \ge a] \le E[e^{t(Y-a)}]$.
- c) T F For any positive RVs $\{X_n\} \subset L_1(\Omega, \mathcal{F}, \mathsf{P}),$

$$\mathsf{E}\left[\sum_{n=1}^{\infty} X_n\right] = \sum_{n=1}^{\infty} \left[\mathsf{E}X_n\right].$$

- d) TF If $X_n \to X$ pr. then $\cos(tX_n) \to \cos(tX)$ in L_1 for each $t \in \mathbb{R}$.
- e) T F For any UI random variables $\{X_{\alpha}\}$, if each $X_{\alpha} \in L_2$ then $\{|X_{\alpha}|^2\}$ is also UI.
- f) T F Let $X \sim \text{Po}(1)$ have the Poisson distribution with $P[X = k] = e^{-1}/k!$ for $k \in \mathbb{Z}_+ = \{0, 1, 2, ...\}$. Then P[X is even] > 1/2.
- g) T F Two σ -fields \mathcal{F}_1 , \mathcal{F}_2 are independent if and only if $\mathsf{P}[F_1 \cap F_2] = \mathsf{P}[F_1] \; \mathsf{P}[F_2]$ for all events $F_i \in \mathcal{F}_i$.
- h) T F Random variables X and Y are independent if and only if $\mathsf{E}[\mathbf{1}_A(X) \cdot \mathbf{1}_B(Y)] = \mathsf{E}[\mathbf{1}_A(X)] \cdot \mathsf{E}[\mathbf{1}_B(Y)]$ for all Borel sets $A, B \in \mathcal{B}(\mathbb{R})$.
 - i) TF If $\{X_n\}$ is UI then for some p > 1 and $B < \infty$ each $||X_n||_p \le B$.

Name:	_ STA	711:	Prob	&	Meas	Theory
-------	-------	------	-----------------------	---	------	--------

Blank Worksheet

Name:	. STA	711:	Prob	&	Meas	Theory
-------	-------	------	------	---	------	--------

Another Blank Worksheet

Name	Notation	$\mathrm{pdf}/\mathrm{pmf}$	Range	Mean μ	Variance σ^2	
Beta	$Be(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	$x \in (0,1)$	$\frac{\alpha}{\alpha + \beta}$	$rac{lphaeta}{(lpha+eta)^2(lpha+eta+1)}$	
Binomial	Bi(n,p)	$f(x) = \binom{n}{x} p^x q^{(n-x)}$	$x \in 0, \cdots, n$	np	$n\ p\ q$	(q=1-p)
${\bf Exponential}$	$Ex(\lambda)$	$f(x) = \lambda e^{-\lambda x}$	$x \in \mathbb{R}_+$	$1/\lambda$	$1/\lambda^2$	
Gamma	$Ga(\alpha,\lambda)$	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$	$x \in \mathbb{R}_+$	$lpha/\lambda$	$lpha/\lambda^2$	
${\bf Geometric}$	Ge(p)	$f(x) = p q^x$	$x \in \mathbb{Z}_+$	q/p	q/p^2	(q=1-p)
		$f(y) = p q^{y-1}$	$y \in \{1, \ldots\}$	1/p	q/p^2	(y = x + 1)
${\bf HyperGeo.}$	HG(n,A,B)	$f(x) = \frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	n P	$n P (1-P) \frac{N-n}{N-1}$	$(P = \frac{A}{A+B})$
${f Logistic}$	$Lo(\mu,\beta)$	$f(x) = \frac{e^{-(x-\mu)/\beta}}{\beta[1 + e^{-(x-\mu)/\beta}]^2}$	$x \in \mathbb{R}$	μ	$\pi^2 eta^2/3$	
Log Normal	$LN(\mu,\sigma^2)$	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}}e^{-(\log x - \mu)^2/2\sigma^2}$	$x \in \mathbb{R}_+$	$e^{\mu+\sigma^2/2}$	$e^{2\mu+\sigma^2}\left(e^{\sigma^2}-1 ight)$	
Neg. Binom.	$NB(\alpha,p)$	$f(x) = \binom{x+\alpha-1}{x} p^{\alpha} q^x$	$x \in \mathbb{Z}_+$	$\alpha q/p$	$lpha q/p^2$	(q=1-p)
		$f(y) = {y-1 \choose y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in \{\alpha, \ldots\}$	lpha/p	$lpha q/p^2$	$(y = x + \alpha)$
Normal	$No(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$	$x \in \mathbb{R}$	μ	σ^2	
Pareto	$Pa(\alpha,\epsilon)$	$f(x) = \alpha \epsilon^{\alpha} / x^{\alpha + 1}$	$x \in (\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha - 1}$	$\frac{\epsilon^2 \alpha}{(\alpha - 1)^2 (\alpha - 2)}$	
Poisson	$Po(\lambda)$	$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_+$	λ	λ	
${\bf Snedecor}\ F$	$F(u_1, u_2)$	$f(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})(\nu_1 / \nu_2)^{\nu_1 / 2}}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \times$	$x \in \mathbb{R}_+$	$\frac{\nu_2}{\nu_2-2}$	$\left(rac{ u_2}{ u_2-2} ight)^2 rac{2(u_1+ u_1)^2}{ u_1(u_2)^2}$	$\frac{\nu_2-2)}{2-4)}$
		$x^{\frac{\nu_1-2}{2}} \left[1 + \frac{\nu_1}{\nu_2} x\right]^{-\frac{\nu_1+\nu_2}{2}}$				
Student t	t(u)	$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2}$	$x \in \mathbb{R}$	0	u/(u-2)	
Uniform	Un(a,b)	$f(x) = \frac{1}{b-a}$	$x \in (a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
Weibull	We(lpha,eta)	$f(x) = \alpha \beta x^{\alpha - 1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_+$	$\frac{\Gamma(1+\alpha^{-1})}{\beta^{1/\alpha}}$	$\frac{\Gamma(1+2/\alpha)-\Gamma^2(1+1/\alpha)}{\beta^{2/\alpha}}$	