Midterm Examination I

STA 711: Probability & Measure Theory

Thursday, 2012 Oct 11, 11:45 am – 1:00pm

This is a closed-book examination. You may use a single sheet of prepared notes, if you wish, but you may not share materials. If a question seems ambiguous or confusing *please* ask me—don't guess, and don't discuss questions with others.

Unless a problem states otherwise, you must **show** your **work**. There are blank worksheets at the end of the test for this. It is to your advantage to write your solutions as clearly as possible. Good luck.

	1.	/20
Print Name:	2.	/20
	3.	/20
	4.	/20
	5.	/20
	Total:	/100

Problem 1. Let $\Omega = \{a, b, c, d\}$ have just four points, with σ -algebra $\mathcal{F} = 2^{\Omega}$ and probability assignment $\mathsf{P}[A] = \sum_{i=1}^4 \frac{i}{10} \mathbf{1}_A(\omega_i)$ to events $A \in \mathcal{F}$, where $\omega_1 = a, \, \omega_2 = b, \, \omega_3 = c$ and $\omega_4 = d$. Define a collection of sets by

$$\mathcal{G} = \{\emptyset, \{a\}, \{b, c\}, \{d\}, \{a, b, c\}, \{a, d\}, \{b, c, d\}, \Omega\}$$

a) (8) Give explicitly a real random variable X that generates $\mathfrak{G} = \sigma(X)$:

$$X(a) = \underline{\hspace{1cm}} X(b) = \underline{\hspace{1cm}} X(c) = \underline{\hspace{1cm}} X(d) = \underline{\hspace{1cm}}$$

b) (6) Give explicitly a real random variable Y that takes only two distinct values, for which $\mathcal{F} = \sigma(X, Y)$:

$$Y(a) = \underline{\hspace{1cm}} Y(b) = \underline{\hspace{1cm}} Y(c) = \underline{\hspace{1cm}} Y(d) = \underline{\hspace{1cm}}$$

c) (6) Find the expectation of your random variables X and Y above:

$$\mathsf{E}[X] = \underline{\hspace{1cm}} \mathsf{E}[Y] = \underline{\hspace{1cm}}$$

Problem 2. Again let $\Omega = \{a, b, c, d\}$ with $\mathcal{F} = 2^{\Omega}$ and P that assigns probabilities 1/10, 2/10, and 3/10 respectively to the singleton sets $\{a\}$, $\{b\}$ and $\{c\}$. Consider the two fields

$$C_1 = \{\emptyset, \{a, b\}, \{c, d\}, \Omega\}$$

 $C_2 = \{\emptyset, \{a, c\}, \{b, d\}, \Omega\}$

a) (8) Are C_1 and C_2 independent? Give a proof or counterexample. Y N Why?

b) (6) Find a real random variable X that is $\mathcal{C}_2 \backslash \mathcal{B}$ -measurable but not $\mathcal{C}_1 \backslash \mathcal{B}$ -measurable (be careful not to mix up 1 and 2).

$$X(a) =$$
 $X(b) =$ $X(c) =$ $X(d) =$

c) (6) Find all random variables that are both $C_2 \setminus B$ and $C_1 \setminus B$ -measurable. Justify your answer.

2

Problem 3. Let $\{U_n\}$ be independent random variables with uniform distributions on $\{0,1\}$ and let $\{p_n\}$ be (non-random) numbers in $\{0,1\}$. Set:

$$X_n = \mathbf{1}_{\{U_n \le p_n\}} \qquad Y_N = \prod_{1 \le n \le N} X_n,$$

each taking the values 0 or 1.

a) (8) What is the probability distribution of X_n ? $\mu_{X_n}(B) =$

b) (6) If possible, find and box a sequence $\{p_n\}$ for which you can show the event $\left[\lim_{N\to\infty}Y_N>0\right]$

has positive probability; if this is not possible, explain why.

c) (6) If possible, find and box a sequence $\{p_n\}$ for which you can show the event

$$\left[\sum_{N=1}^{\infty} X_N < \infty\right]$$

3

has positive probability; if this is not possible, explain why.

Problem 4. Let $(\Omega, \mathcal{F}, \mathsf{P})$ be the natural numbers $\Omega = \mathbb{N} = \{1, 2, 3, \dots\}$ with $\mathcal{F} = 2^{\Omega}$ and $\mathsf{P}[A] = \sum \{2^{-\omega} : \omega \in A \cap \mathbb{N}\}.$

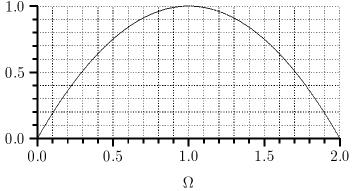
a) (7) Fix $\lambda \in \mathbb{R}$. Is the random variable $X(\omega) = e^{\lambda \omega}$ in $L_1(\Omega, \mathcal{F}, \mathsf{P})$? If so, find $\mathsf{E}[X]$ in closed form; if not, tell why; if this depends on λ , explain. \bigcirc Yes \bigcirc No \bigcirc It Depends Reasoning?

b) (7) For $n \in \mathbb{N}$ define a random variable Y_n by $Y_n(\omega) = n$ if $\omega \geq n$, $Y_n(\omega) = 0$ if $\omega < n$. Does the Dominated Convergence Theorem apply to $\{Y_n\}$? If so, tell what DCT says and show why it applies; if not, explain why. \bigcirc Yes \bigcirc No Reasoning:

c) (6) Define Y_n as above. Does Fatou's Lemma apply? If so, verify Fatou's conclusion **by calculation**; if not, why? \bigcirc Yes \bigcirc No Reasoning:

Problem 5. Let $X = \omega(2 - \omega)$ be a random variable on the space $\Omega = (0, 2]$ with $\mathcal{F} = \mathcal{B}(\Omega)$, the Borel sets (it's plotted below).

a) (7) Find and plot a non-negative simple random variable $Y \in \mathcal{E}_+$ satisfying $0 \le Y(\omega) \le X(\omega)$ and $|X(\omega) - Y(\omega)| \le 0.4$ for all $\omega \in \Omega$.



 $Y(\omega) =$

b) (7) Find EX and EY for the probability measure $P(d\omega) = d\omega/2$ (i.e., $P\{(a,b]\} = (b-a)/2$ for all $0 \le a \le b \le 2$):

 $\mathsf{E} X = \underline{\hspace{1cm}} \mathsf{E} Y = \underline{\hspace{1cm}}$

c) (6) Let $Z=1_{(0,1]}(\omega)$. Are X and Z independent on $(\Omega,\mathcal{F},\mathsf{P})$? \bigcirc Yes \bigcirc No Why?

Name:	_ STA	711:	Prob	&	Meas	Theory
-------	-------	------	-----------------------	---	------	--------

Blank Worksheet

6

Another Blank Worksheet