## Midterm Examination II

STA 711: Probability & Measure Theory

Thursday, 2012 Nov 15, 11:45 am - 1:00 pm

This is a closed-book exam. You may use a single sheet of prepared notes, if you wish, but you may not share materials. If a question seems ambiguous or confusing, *please* ask me to clarify it.

Unless a problem states otherwise, you must **show** your **work**. There are blank worksheets at the end of the test for this. It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find. For full credit, give answers in **closed form** (no unevaluated sums, integrals, maxima, etc.) where possible and **simplify**.

Good luck!

| 1.     | /20  |
|--------|------|
| 2.     | /20  |
| 3.     | /20  |
| 4.     | /20  |
| 5.     | /20  |
| Total: | /100 |

| Print Name: |
|-------------|
|-------------|

Name:

**Problem 1:** Let  $\Omega = \mathbb{R}_+$  with Borel sets  $\mathcal{F} = \mathcal{B}(\mathbb{R}_+)$  and probability measure

$$\mathsf{P}[A] := \int_A e^{-\omega} \, d\omega$$

for  $A \in \mathcal{F}$ . For  $n \in \mathbb{Z}_+ := \{0, 1, 2, \dots\}$  set  $X_n(\omega) := \omega^n$ .

a) (6) Find (explicitly, in closed form—simplify) the bound that a direct application of Markov's inequality<sup>1</sup> gives for

$$P[X_3 \ge 8] \le$$

b) (6) Find (in closed form— simplify) the exact probability  $P[X_3 \ge 8] =$ 

c) (8) Set  $Z := \sum_{0 \le n < \infty} X_n/n!$ . Evaluate  $Z(\omega)$  explicitly and find  $\mathsf{E}[Z^p]$  for each p > 0:

$$Z(\omega) = \underline{\hspace{1cm}}$$

$$\mathsf{E}[Z^p] =$$

<sup>&</sup>lt;sup>1</sup>You can compute  $\mathsf{E} X_n$  explicitly, using the Gamma or factorial functions.

**Problem 2**: Let  $\{X_i, Y_i : i \in \mathbb{N}\}$  be iid with the standard exponential  $\mathsf{Ex}(1)$  distribution<sup>2</sup>. Set  $Z_i := (X_i - Y_i)$  and  $S_n := \sum_{1 \le i \le n} Z_i$ .

a) (5) Find the characteristic function for  $S_n$ :<sup>3</sup>  $\phi_n(\omega) := \mathsf{E} e^{i\omega S_n} =$ 

b) (5) Find the mean and variance of  $S_n$  by any method you wish (but show your work or explain your answer):

$$\mu_n := \mathsf{E} S_n = \underline{\qquad} \sigma_n^2 := \mathsf{E} (S_n - \mu_n)^2 = \underline{\qquad}$$

<sup>&</sup>lt;sup>2</sup>A sheet of information about common distributions is at the back of this exam.

<sup>&</sup>lt;sup>3</sup>Suggestion: First find the ch.f. for  $X_1$ ; then for  $-Y_1$ ; then for  $Z_1$ ; then for  $S_n$ .

## Problem 2 (cont'd):

c) (5) Find the indicated limits for  $\omega \in \mathbb{R}$  as  $n \to \infty$ :

 $\phi_n(\omega/n) \to$ 

 $S_n/n \Rightarrow$ 

d) (5) Find the indicated limits for  $\omega \in \mathbb{R}$  as  $n \to \infty$ :

 $\phi_n(\omega/\sqrt{n}) \to \underline{\hspace{1cm}} S_n/\sqrt{n} \Rightarrow \underline{\hspace{1cm}}$ 

**Problem 3**: Let  $\{X_n\}$  be independent real-valued random variables on a probability space  $(\Omega, \mathcal{F}, \mathsf{P})$  for  $n \in \mathbb{N}$ , with a common *continuous* distribution. Call  $X_n$  a "record" if  $X_n > \max\{X_j : 1 \le j < n\}$   $(X_1$  is always a record), and set:

$$\zeta_n := \begin{cases} 1 & X_n \text{ is a record} \\ 0 & X_n \text{ is not a record.} \end{cases}$$

a) (5) Find<sup>4</sup>

 $\mathsf{E}[\zeta_n] = \mathsf{P}[X_n \text{ is a record}] = \underline{\hspace{1cm}}$ 

b) (5) Are  $\{\zeta_2, \zeta_3\}$  independent?  $\bigcirc$  Yes  $\bigcirc$  No Why?<sup>4</sup>

<sup>&</sup>lt;sup>4</sup>For parts a) b) c) of this problem it is only the *order* of the  $\{X_n\}$  that matter, not their specific values. What *are* the possible orders of, say,  $X_1, X_2, X_3$ ? What are their probabilities? Recall that they are iid with a continuous distribution. Symmetry helps.

## Problem 3 (cont'd):

c) (5) Let  $Z_n := \sum_{j=1}^n \zeta_j$  be the number of records among the first n observations. Prove  $Z_n/n \to 0$  in  $L_1$  (for 4pts) and a.s (for 1 pt).

d) (5) Which of the preceding answers in this Problem 3 would change if the common distribution of  $\{X_n\}$  were not continuous? Give an example to illustrate.<sup>5</sup> Circle the ones that would change: a) b) c) and explain:

<sup>&</sup>lt;sup>5</sup>Suggestion: consider iid Bernoulli  $\{X_n\}$  with p=1/2.

**Problem 4**: Let X be a discrete-valued random variable with pmf  $p_n = P[X = a_n]$  for some  $\{a_n\} \subset \mathbb{R}$ ,  $\{p_n\} \subset \mathbb{R}_+$  s.t.  $\sum_{n=1}^{\infty} p_n = 1$  and let Y be an absolutely-continuous real valued random variable with pdf g(y), independent of X.

a) (4) Exactly what does it mean for X and Y to be independent? Give either the definition or a sufficient criterion.

b) (4) Give an expression (it should involve  $\{a_n\}$ ,  $\{p_n\}$ , and g) for the indicated expectation, for a bounded measurable  $h: \mathbb{R}^2 \to \mathbb{R}$ :  $\mathsf{E}[h(X,Y)] =$ 

c) (6) Is the sum  $Z := X + Y \bigcirc discrete$ ,  $\bigcirc absolutely continuous$ , or  $\bigcirc can't \ tell$ ?? If discrete, give the pmf p(z); if absolutely continuous, give the pdf f(z); if this can't be determined, explain.

d) (6) Give the exact conditions on  $\{a_n\}$ ,  $\{p_n\}$ , and g needed to ensure that  $X \in L_2$  and  $Y \in L_2$ .

**Problem 5**: True or false? Circle one; each answer is 2 points. No explanations are needed, but you can give one if you think the question is ambiguous or tricky (no tricks are intended). All random variables are real.

- a) T F Lebesgue's dominated convergence theorem implies that  $\int_0^1 \sin(nx) dx \to 0$  as  $n \to \infty$ .
  - b) T F Jensen's Inequality implies that  $E(X^2) \ge (EX)^2$  for  $X \in L_1$ .
  - c) TF For any r.v. Y and number a > 0,  $P[Y > a] \le E[Y^2]/a^2$ .
  - d) TF For any sequence of random variables  $\{X_n\} \subset L_1(\Omega, \mathcal{F}, \mathsf{P})$ ,

$$\mathsf{E}\left[\sum_{n=1}^{\infty} X_n\right] = \sum_{n=1}^{\infty} \big[\mathsf{E}X_n\big].$$

- e) T F For any random variables  $\{X_{\alpha}\}, \{\cos(X_{\alpha})\}\$  is UI.
- f) TF Let X have the geometric distribution with  $P[X = k] = 2^{-k-1}$  for  $k \in \mathbb{Z}_+ = \{0, 1, 2, ...\}$ . Then  $P[X \text{ is odd}] \geq 1/2$ .
- g) T F Three  $\sigma$ -fields  $\mathcal{F}_1$ ,  $\mathcal{F}_2$ ,  $\mathcal{F}_3$  are independent if and only if  $P[F_i \cap F_j] = P[F_i] P[F_j]$  for every  $F_i \in \mathcal{F}_i$ , for  $i, j \in \{1, 2, 3\}$  with  $i \neq j$ .
- h) T F Random variables X and Y are independent if and only if  $\mathsf{E}[f(X)\cdot g(Y)] = \mathsf{E}[f(X)]\cdot \mathsf{E}[g(Y)]$  for all bounded Borel functions f(x),g(y).
  - i) TF If  $\{X_n\}$  is UI then for some constant B > 0 each  $||X_n||_1 \le B$ .
- j) T F If  $X_n$  is absolutely continuous with pdf  $f_n(x)$  and if  $X_n$  converges in distribution, then the limiting distribution has a pdf f(x) and  $f_n(x) \to f(x)$  as  $n \to \infty$  for every x where f(x) is continuous.

| Name: | _ STA | 711: | $\operatorname{Prob}$ | & | Meas | Theory |
|-------|-------|------|-----------------------|---|------|--------|
|-------|-------|------|-----------------------|---|------|--------|

Blank Worksheet

| Name: | _ STA | 711: | Prob | & | Meas | Theory |
|-------|-------|------|------|---|------|--------|
|-------|-------|------|------|---|------|--------|

## Another Blank Worksheet

| Name                | Notation              | $\mathrm{pdf}/\mathrm{pmf}$                                                                                                       | Range                      | Mean $\mu$                                       | Variance $\sigma^2$                                                   |                         |
|---------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------|-----------------------------------------------------------------------|-------------------------|
| Beta                | $Be(\alpha,\beta)$    | $f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$                                    | $x \in (0,1)$              | $\frac{\alpha}{\alpha + \beta}$                  | $rac{lphaeta}{(lpha+eta)^2(lpha+eta+1)}$                             |                         |
| Binomial            | Bi(n,p)               | $f(x) = \binom{n}{x} p^x q^{(n-x)}$                                                                                               | $x \in 0, \cdots, n$       | np                                               | $n\ p\ q$                                                             | (q=1-p)                 |
| ${\bf Exponential}$ | $Ex(\lambda)$         | $f(x) = \lambda e^{-\lambda x}$                                                                                                   | $x \in \mathbb{R}_+$       | $1/\lambda$                                      | $1/\lambda^2$                                                         |                         |
| Gamma               | $Ga(\alpha,\lambda)$  | $f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$                                                    | $x \in \mathbb{R}_+$       | $lpha/\lambda$                                   | $lpha/\lambda^2$                                                      |                         |
| ${\bf Geometric}$   | Ge(p)                 | $f(x) = p  q^x$                                                                                                                   | $x \in \mathbb{Z}_+$       | q/p                                              | $q/p^2$                                                               | (q=1-p)                 |
|                     |                       | $f(y) = p  q^{y-1}$                                                                                                               | $y \in \{1, \ldots\}$      | 1/p                                              | $q/p^2$                                                               | (y = x + 1)             |
| ${\bf HyperGeo.}$   | HG(n,A,B)             | $f(x) = \frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}}$                                                                        | $x \in 0, \cdots, n$       | n P                                              | $n P (1-P) \frac{N-n}{N-1}$                                           | $(P = \frac{A}{A+B})$   |
| ${f Logistic}$      | $Lo(\mu,\beta)$       | $f(x) = \frac{e^{-(x-\mu)/\beta}}{\beta[1 + e^{-(x-\mu)/\beta}]^2}$                                                               | $x \in \mathbb{R}$         | $\mu$                                            | $\pi^2 eta^2/3$                                                       |                         |
| Log Normal          | $LN(\mu,\sigma^2)$    | $f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}}e^{-(\log x - \mu)^2/2\sigma^2}$                                                            | $x \in \mathbb{R}_+$       | $e^{\mu+\sigma^2/2}$                             | $e^{2\mu+\sigma^2}\left(e^{\sigma^2}-1 ight)$                         |                         |
| Neg. Binom.         | $NB(\alpha,p)$        | $f(x) = \binom{x+\alpha-1}{x} p^{\alpha} q^x$                                                                                     | $x \in \mathbb{Z}_+$       | $\alpha q/p$                                     | $lpha q/p^2$                                                          | (q=1-p)                 |
|                     |                       | $f(y) = {y-1 \choose y-\alpha} p^{\alpha} q^{y-\alpha}$                                                                           | $y \in \{\alpha, \ldots\}$ | lpha/p                                           | $lpha q/p^2$                                                          | $(y = x + \alpha)$      |
| Normal              | $No(\mu,\sigma^2)$    | $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$                                                                   | $x \in \mathbb{R}$         | $\mu$                                            | $\sigma^2$                                                            |                         |
| Pareto              | $Pa(\alpha,\epsilon)$ | $f(x) = \alpha  \epsilon^{\alpha} / x^{\alpha + 1}$                                                                               | $x \in (\epsilon, \infty)$ | $\frac{\epsilon \alpha}{\alpha - 1}$             | $\frac{\epsilon^2 \alpha}{(\alpha - 1)^2 (\alpha - 2)}$               |                         |
| Poisson             | $Po(\lambda)$         | $f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$                                                                                        | $x \in \mathbb{Z}_+$       | $\lambda$                                        | $\lambda$                                                             |                         |
| ${\bf Snedecor}\ F$ | $F( u_1, u_2)$        | $f(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})(\nu_1 / \nu_2)^{\nu_1 / 2}}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \times$ | $x \in \mathbb{R}_+$       | $\frac{\nu_2}{\nu_2-2}$                          | $\left(rac{ u_2}{ u_2-2} ight)^2 rac{2( u_1+ u_1)^2}{ u_1( u_2)^2}$ | $\frac{\nu_2-2)}{2-4)}$ |
|                     |                       | $x^{\frac{\nu_1-2}{2}} \left[1 + \frac{\nu_1}{\nu_2} x\right]^{-\frac{\nu_1+\nu_2}{2}}$                                           |                            |                                                  |                                                                       |                         |
| Student  t          | t( u)                 | $f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2}$                            | $x \in \mathbb{R}$         | 0                                                | u/( u-2)                                                              |                         |
| Uniform             | Un(a,b)               | $f(x) = \frac{1}{b-a}$                                                                                                            | $x \in (a, b)$             | $\frac{a+b}{2}$                                  | $\frac{(b-a)^2}{12}$                                                  |                         |
| Weibull             | We(lpha,eta)          | $f(x) = \alpha \beta  x^{\alpha - 1}  e^{-\beta  x^{\alpha}}$                                                                     | $x \in \mathbb{R}_+$       | $\frac{\Gamma(1+\alpha^{-1})}{\beta^{1/\alpha}}$ | $\frac{\Gamma(1+2/\alpha)-\Gamma^2(1+1/\alpha)}{\beta^{2/\alpha}}$    |                         |