Final Examination

STA 711: Probability & Measure Theory

Tuesday, 2013 Dec 10, 9:00 am – 12:00n

This is a closed-book examination. You may use a sheet of prepared notes, if you wish, but you may not share materials. If a question seems ambiguous or confusing, *please* ask me to clarify it.

Unless a problem states otherwise, you must **show** your **work**. There are blank worksheets and a pdf/pmf sheet at the end of the test. It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find. Good luck.

1.	/20	5.	/20
2.	/20	6.	/20
3.	/20	7.	/20
4.	/20	8.	/20
	/80		/80
Total:			/160

Problem 1: Let $\{\mathcal{L}_n\}$ and $\{\mathcal{P}_n\}$ be nested sequences of λ -systems and π -systems¹, respectively, on a probability space $(\Omega, \mathcal{F}, \mathsf{P})$, *i.e.*, that satisfy $\mathcal{L}_n \subset \mathcal{L}_{n+1} \subset \mathcal{F}$ and $\mathcal{P}_n \subset \mathcal{P}_{n+1} \subset \mathcal{F}$ for each $n \in \mathbb{N}$. For each of parts a)-d), give a proof or a counter-example.

a) (5) Is $\cap \mathcal{L}_n$ a λ -system? \bigcirc Yes \bigcirc No Why?

b) (5) Is $\cup \mathcal{L}_n$ a λ -system? \bigcirc Yes \bigcirc No Why?

Fall 2013

¹Recall: \mathcal{L} is a λ -system if (a) $\Omega \in \mathcal{L}$, (b) $A \in \mathcal{L} \Rightarrow A^c \in \mathcal{L}$, and (c) $\{A_n\} \subset \mathcal{L}$ disjoint $\Rightarrow \cup A_n \in \mathcal{L}$. \mathcal{P} is a π -system if $A, B \in \mathcal{P} \Rightarrow A \cap B \in \mathcal{P}$.

Problem 1 (cont'd): Still $\mathcal{L}_n \subset \mathcal{L}_{n+1} \subset \mathcal{F}$ are λ -systems and $\mathcal{P}_n \subset \mathcal{P}_{n+1} \subset \mathcal{F}$ are π -systems on $(\Omega, \mathcal{F}, \mathsf{P})$.

c) (5) Is $\cap \mathcal{P}_n$ a π -system? \bigcirc Yes \bigcirc No Why?

d) (5) Is $\cup \mathcal{P}_n$ a π -system? \bigcirc Yes \bigcirc No Why?

Problem 2: Let $\Omega = (0, 1]^2$ be the unit square, $\mathcal{F} = \mathcal{B}(\Omega)$ the Borel sets, and P Lebesgue measure. Consider several families of events:²

a) (4) Which (if any) of these is a π -system? Circle those that are:

$$\mathcal{A} \quad \mathcal{B} \quad \mathcal{C} \quad \mathcal{D}$$

b) (4) Which (if any) of these generates \mathcal{F} , *i.e.*, has $\sigma(\cdots) = \mathcal{F}$?

$$\mathcal{A} \quad \mathcal{B} \quad \mathcal{C} \quad \mathcal{D}$$

c) (6) Prove both your assertions about A.

d) (6) Prove both your assertions about C.³

3

Fall 2013

²Drawing pictures helps.

³I wouldn't suggest spending lots of time on the "b)" section of this part until the rest of the exam was mostly done.

Problem 3: Let $\Omega = \mathbb{R}_+ = [0, \infty)$ be the positive half-line, with Borel sets $\mathcal{F} = \mathcal{B}(\mathbb{R}_+)$ and probability measure P given by $\mathsf{P}(d\omega) = 2e^{-2\omega} d\omega$ or, equivalently,

$$P[(a,b]] = e^{-2a} - e^{-2b}$$
 $0 \le a \le b < \infty$.

For each integer $n \in \mathbb{N} = \{1, 2, \dots\}$ define a random variable on (Ω, \mathcal{F}) by

$$X_n(\omega) := \omega^n$$
.

a) (4) Find the mean $m_n = \mathsf{E}[X_n]$ for each $n \in \mathbb{N}$ and the covariance $\Sigma_{mn} = \mathsf{E}[(X_m - m_m)(X_n - m_n)]$ for each $m, n \in \mathbb{N}$ (see footnote⁴):

$$m_n = \sum_{mn} =$$

b) (4) Give the distribution $\mu_n(\cdot)$ of X_n , a probability measure on $(\mathbb{R}, \mathcal{B})$: $\mu_n(B) =$

⁴Recall $\Gamma(\alpha) := \int_0^\infty z^{\alpha-1} e^{-z} dz$ for $\alpha > 0$, or $(\alpha - 1)!$ for $\alpha \in \mathbb{N}$

Problem 3 (cont'd): As before, $\Omega = \mathbb{R}_+$, $\mathcal{F} = \mathcal{B}(\mathbb{R}_+)$, $P(d\omega) = 2e^{-2\omega} d\omega$, and $X_n(\omega) := \omega^n$ for $n \in \mathbb{N}$

c) (4) Find the indicated conditional expectation. Explain your answer. $\mathsf{E}[X_2\mid X_4](\omega) = \underline{\hspace{1cm}}$

d) (4) Does X_n converge to a limit $X \in L_2$? If so, find X; if not, why? \bigcirc Yes \bigcirc No

e) (4) For which (if any) p > 0 does $Y_n = \sum_{j=0}^n X_j/j!$ converge in L_p as $n \to \infty$ to a limit $Y \in L_p$? Why?

Problem 4: Let $\{A_n\} \subset \mathcal{F}$ and $\{X_n\} \subset L_1(\Omega, \mathcal{F}, \mathsf{P})$ with $||X_n||_1 \leq 1$ and $P(A_n) \to 0$.

a) (8) Does it follow that $\mathsf{E} X_n \mathbf{1}_{A_n} \to 0$? O Yes O No Prove it, or find a counter-example:

b) (8) Does it follow that $\mathsf{E} X_1 \mathbf{1}_{A_n} \to 0$? O Yes O No Prove it, or find a counter-example:

c) (4) Would either of your answers to a) or b) change if we have $\{X_n\} \subset L_2(\Omega, \mathcal{F}, \mathsf{P})$ with $\|X_n\|_2 \leq 1$? Explain.

Problem 5: Let $\{A_n\}$ be events on some probability space $(\Omega, \mathcal{F}, \mathsf{P})$ with $\mathsf{P}(A_n) = 2^{-n}$ and for $n \geq 0$ set

$$X_n := 2^n \mathbf{1}_{A_n}$$

a) (4) Show that $Y := \sum_{n=0}^{\infty} X_n$ is finite almost-surely:

b) (4) For which $0 is <math>X_n \in L_p$? Why?

c) (6) For which $0 is <math>Y \in L_p$? Why?

d) (6) Is the collection $\{X_n\}$ Uniformly Integrable? \bigcirc Yes \bigcirc No Why?

Problem 6: Let $X \in L_2(\Omega, \mathcal{F}, \mathsf{P})$ have mean $\mathsf{E} X = 0$ and variance $\sigma^2 = \mathsf{E} X^2$.

a) (8) For all a > 0 and $t \in \mathbb{R}$ prove the one-sided bound

$$P[X > a] \le \frac{\sigma^2 + t^2}{(a+t)^2}$$

b) (8) Find the value of t > 0 that minimizes this bound (Hint: logarithms make this easier). Simplify!

c) (4) Find the resulting bound on tail probabilities (Simplify!): $\mathsf{P}[X>a] \le$

Problem 7: The random variables X and Z are independent, with distributions

$$X \sim \text{No}(0,1)$$
 $P[Z=+1] = 1/2 = P[Z=-1]$

while Y := XZ is their product. Simplify all answers.

a) (6) What is the probability distribution of Y?

b) (4) What is the covariance of X and Y?

c) (5) Are X and Y independent? \bigcirc Yes \bigcirc No Why?

d) (5) Are Y and Z independent? \bigcirc Yes \bigcirc No Why?

Problem 8: Let $\{X_n\} \subset L_2(\Omega, \mathcal{F}, \mathsf{P})$ be independent and identically distributed with mean $\mu = \mathsf{E} X_1$ and variance $\sigma^2 = \mathsf{E}(X_1 - \mu)^2$, and let $\mathcal{F}_n = \sigma\{X_j : 1 \leq j \leq n\}$. Fix any $\epsilon > 0$. Choose True or False below; no need to explain (unless you can't resist). Each is 2pt.

- a) TF For any $Y \in L_1(\Omega, \mathcal{F}, \mathsf{P}), M_n := \mathsf{E}[Y \mid \mathcal{F}_n]$ is a martingale.
- b) TF For Y and $M_n := E[Y \mid \mathcal{F}_n]$ as above, $|M_n| \leq |Y|$ a.s.
- c) T F If Z is measurable over $\cap_{n\geq m} \mathcal{F}_n$ for each $m\in\mathbb{N}$, then Z is constant a.s.
 - d) T F Almost surely, $\{n: X_n > n\epsilon\}$ is a finite set.
 - e) TF $\int_{-\epsilon}^{\epsilon} |x|^{-1/2} dx$ is well-defined and finite.
 - f) TF If $E[\exp(Z)] < \infty$ and $E[\exp(-Z)] < \infty$, then $Z \in L_2$.
- g) T F Any function of $\{X_{2n} : n \in \mathbb{N}\}$ is independent of any function of $\{X_{2n+1} : n \in \mathbb{N}\}$.
 - h) TF $E[X_1 \mid (X_1 + X_2 + X_3 + X_4 + X_5 + X_6) = 42] = 7$
 - i) TF If $Y_n := X_n^2$ then $\{Y_n\}$ are UI
 - j) TF Necessarily $P[\limsup |X_n| = \infty] = 1 = P[\liminf |X_n| = 0]$

Fall 2013

Blank Worksheet

Another Blank Worksheet

Name	Notation	$\mathrm{pdf}/\mathrm{pmf}$	Range	Mean μ	Variance σ^2	
Beta	$Be(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	$x \in (0,1)$	$\frac{\alpha}{\alpha + \beta}$	$rac{lphaeta}{(lpha+eta)^2(lpha+eta+1)}$	
Binomial	Bi(n,p)	$f(x) = \binom{n}{x} p^x q^{(n-x)}$	$x \in 0, \cdots, n$	np	$n\ p\ q$	(q=1-p)
${\bf Exponential}$	$Ex(\lambda)$	$f(x) = \lambda e^{-\lambda x}$	$x \in \mathbb{R}_+$	$1/\lambda$	$1/\lambda^2$	
Gamma	$Ga(\alpha,\lambda)$	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$	$x \in \mathbb{R}_+$	$lpha/\lambda$	$lpha/\lambda^2$	
${\bf Geometric}$	Ge(p)	$f(x) = p q^x$	$x \in \mathbb{Z}_+$	q/p	q/p^2	(q=1-p)
		$f(y) = p q^{y-1}$	$y \in \{1, \ldots\}$	1/p	q/p^2	(y = x + 1)
${\bf HyperGeo.}$	HG(n,A,B)	$f(x) = \frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	n P	$n P (1-P) \frac{N-n}{N-1}$	$(P = \frac{A}{A+B})$
${f Logistic}$	$Lo(\mu,\beta)$	$f(x) = \frac{e^{-(x-\mu)/\beta}}{\beta[1 + e^{-(x-\mu)/\beta}]^2}$	$x \in \mathbb{R}$	μ	$\pi^2 eta^2/3$	
Log Normal	$LN(\mu,\sigma^2)$	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}}e^{-(\log x - \mu)^2/2\sigma^2}$	$x \in \mathbb{R}_+$	$e^{\mu+\sigma^2/2}$	$e^{2\mu+\sigma^2}\left(e^{\sigma^2}-1 ight)$	
Neg. Binom.	$NB(\alpha,p)$	$f(x) = \binom{x+\alpha-1}{x} p^{\alpha} q^x$	$x \in \mathbb{Z}_+$	$\alpha q/p$	$lpha q/p^2$	(q=1-p)
		$f(y) = {y-1 \choose y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in \{\alpha, \ldots\}$	lpha/p	$lpha q/p^2$	$(y = x + \alpha)$
Normal	$No(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$	$x \in \mathbb{R}$	μ	σ^2	
Pareto	$Pa(\alpha,\epsilon)$	$f(x) = \alpha \epsilon^{\alpha} / x^{\alpha + 1}$	$x \in (\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha - 1}$	$\frac{\epsilon^2 \alpha}{(\alpha - 1)^2 (\alpha - 2)}$	
Poisson	$Po(\lambda)$	$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_+$	λ	λ	
${\bf Snedecor}\ F$	$F(u_1, u_2)$	$f(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})(\nu_1 / \nu_2)^{\nu_1 / 2}}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \times$	$x \in \mathbb{R}_+$	$\frac{\nu_2}{\nu_2-2}$	$\left(rac{ u_2}{ u_2-2} ight)^2 rac{2(u_1+ u_1)^2}{ u_1(u_2)^2}$	$\frac{\nu_2-2)}{2-4)}$
		$x^{\frac{\nu_1-2}{2}} \left[1 + \frac{\nu_1}{\nu_2} x\right]^{-\frac{\nu_1+\nu_2}{2}}$				
Student t	t(u)	$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2}$	$x \in \mathbb{R}$	0	u/(u-2)	
Uniform	Un(a,b)	$f(x) = \frac{1}{b-a}$	$x \in (a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
Weibull	We(lpha,eta)	$f(x) = \alpha \beta x^{\alpha - 1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_+$	$\frac{\Gamma(1+\alpha^{-1})}{\beta^{1/\alpha}}$	$\frac{\Gamma(1+2/\alpha)-\Gamma^2(1+1/\alpha)}{\beta^{2/\alpha}}$	