
ExtremesRobert L. WolpertDepartment of Statistial SieneDuke University, Durham, NC, USAVsn 13, 2014-05-201 Extreme ValuesMost probability books do a �ne job of overing the approximate probability distribution of sums(or averages) of independent random variables. If fXjg are independent and identially distributed(iid) with any distribution having a �nite mean � and variane �2, the sum and averageSn := nXj=1 �Xn := 1nSnare eah asymptotially normally distributed in the sense that their standardized versionZn := Sn � n��pn = �Xn � ��=pnsatis�es limn!1P[a < Zn � b℄ = �(b)� �(a)uniformly in �1 < a < b <1, where�(x) := 1p2� Z x�1 e�z2=2 dzdenotes the standard Normal df funtion. Some texts go further and disuss limits for sumsof random variables Xj that do not have �nite means or varianes| in that ase the �-Stabledistribution emerges as another (in fat, the only other) possible limiting distribution for normalizedsums of the form Sn � bnanfor suitable non-random sequenes fang, fbng.In light of reent onerns about eonomi rises and limate hanges leading to atastrophes instorm and drought severity, temperature, hurriane intensity, and suh, there is a new interest inlooking not at the probability distributions of averages (like �Xn) but at those of extremes, like:X�n := max1�j�nXj:1



The best tool for studying sums of iid random variables is the harateristi funtion �(!) = Eei!Xj ,beause the hf �n for the sum Sn has a simple expression: �n(!) = �(!)n. The best tool forstudying maxima or minima of iid random variables is the CDF, for the same reason:Fn(x) = P[X�n � x℄ = P f\ni=1[Xi � x℄g = F (x)n:For (X�n � bn)=an to have a limiting distribution G(z), we would needP�X�n � bnan � z� = Fn(bn + zan)= F (bn + zan)n= [1� �F (bn + zan)℄n! G(z):We'll need �F (bn + zan) � 1n , or (bn + zan) � F�1�1 � 1n�, so good starting plaes would be an orbn to be about F�1(1� 1n). Let's look at examples.1.1 Example 1: Exponential DistributionLet fXjg have independent Exponential distributions Xj iid� Ex(�), and let X�n be the largest of the�rst n. Can we �nd non-random sequenes fang, fbng and a limiting df G(z) for whihlimn!1P �X�n � bnan � z� = G(z)?For any sequenes fang, fbng the exat probabilities areP �X�n � bnan � z� = P[X�n � anz + bn℄= P�\nj=1[Xj � anz + bn℄	= fP[X1 � anz + bn℄gn= n1� e��(anz+bn)onThe goal is to �nd fan; bng for whih this onverges as n!1 to a DF. For this we need the termin braes be 1 � O(1=n), so we need logn� �(anz + bn) to onverge. If we now hoose an := 1=�and bn := (log n)=�, P �X�n � bnan � z� = �1� 1ne�z�n! G(z) := exp �� e�z�; (1)the standard Gumbel Distribution. Its median ism� = � log log 2 � 0:366513 (sineG(� log log 2) =exp(� log 2) = 1=2) and its mean is �� = e � 0:577216, the Euler-Masheroni onstant, so themedian m�n and mean ��n for X�n arem�n = log n� log log 2� ��n = log n+ e� ;2



eah growing with n at a logarithmi rate.For example, if we imagine that sprinters' speed in m/s are given by the Ex(1) distribution, then thefastest speed of n independently-drawn sprinters would have approximately the re-saled GumbelDistribution with median m�n = log n� log log 2; this has even odds of exeeding Usain Bolt's 2009world-reord 100m pae of 9.69s iflogn� log log 2 � 100m9:69s= 10:32m/slog n � log log 2 + 10:32n � exp(�0:37 + 10:32 = 9:95)= 21 023:73;i.e., there's about an even hane that one of 21,024 independent Ex(1) random variables wouldexeed Bolt's pae.For this example we an ompute exatly the median for X�n or, if we prefer, the probability thatX�n exeeds 9:95 for n = 21024; the latter, for example, isP[X�21024 > 10:32℄ = �1� exp(�10:32)�21024 = 0:5000176;so the approximation is quite good.1.2 Example 2: Normal DistributionNow let fXjg have independent standard Normal distributionsXj iid� No(0; 1), setX�n := max1�j�nXj ,and seek non-random fang, fbng and a limiting df G(z) for a�1n (X�n � bn). First we need to notethat, for x > 0, �(�x) = Z 1x �(z) dz� Z 1x zx�(z) dz = 1xp2� Z 1x ze�z2=2 dz = 1x�(x);Gordon's Inequality improves this to the two-sided bound1 � �(x)x�(�x) � 1 + 1x2for every x > 0. Now let bn := ���1(1=n) be the (1� 1=n)'th quantile (so �(�bn) = 1=n) and setan := 1=bn; note that bn �q2 log n grows as n!1, while an ! 0. By Taylor's theorem and theevenness of �(z), for �xed z 2 R,log �(�anz � bn) = log�(�bn)� anz �(�bn)�(�bn) + o(anz)= log 1n � z �(bn)bn�(�bn) + o(anz)= log 1n � z + o(anz)3



so P[X1 � anz + bn℄ = �(anz + bn)= 1� 1ne�z+o(1=plog n); andP[X�n � anz + bn℄ � �1� n�1e�z�n� exp(�e�z) =: G(z);again the Gumbel distribution. Similarly, if fXig iid� No(�; �2) (now with arbitrary mean andvariane) then we simply hange the loation and sale to �nd that with bn := �� ���1(1=n) andan := ��=��1(1=n) we have P �X�n � bnan � z�! G(z) = e�e�z ;with median m�n = �� ���1(1=n) + (log log 2)�=��1(1=n)growing like �p2 log n as n!1.Typially unbounded distributions like the Exponential and Normal (as well as the Gamma, Log-normal, Weibull, et.) whose tails fall o� exponentially or faster will have this same Gumbel limitingdistribution for the maxima, and will have medians (and other quantiles) that grow as n !1 atthe rate of (some power of) logn.1.3 Example 3: Pareto DistributionDistributions with \fatter tails" (i.e., those for whih P[X > x℄ falls o� no faster than a powerof x) will have a di�erent limit. For example, let fUjg be iid Uniform random variables and setXj = 1=Uj ; then Xj has the \unit Pareto distribution" determined byP[Xj > x℄ = 1=x; x � 1and the maximum X�n of n iid unit Paretos will satisfyP[X�n � anz + bn℄ = �1� [anz + bn℄�1�n anz + bn � 1:With an := n and bn := 0, = �1� 1nz �n ! e�1=z =: F (z); z > 0; (2)the \unit Fr�ehet Distribution". Similarly for Xj = �U�1=�j with the Pa(�; �) distribution satisfyingP[Xj > x℄ = ��=x�; x � �;set an := n1=�� and bn := 0, thenP[X�n � anz + bn℄ = �1� 1nz���n ! e�z�� =: F (z j �); z > 0;4



the Fr�ehet distribution with shape parameter � > 0. The Fr�ehet median is (log 2)�1=�, so X�nhas median m�n = n1=��(log 2)�1=�that grows like a power of n, while the mean is in�nite. This limiting behavior is typial forheavy-tailed distributions suh as the t, �-stable, and Pareto.1.4 Example 4a: Beta Distribution MinimumFor �; � > 0, the 1=�'th power of an exponential Ex(�) random variable has the Weibull We(�; �)distribution, with Survival Funtion (SF) �F (x) = P[X > x℄ = exp(��x�) for x � 0. It follows thatthe minimum X�n of n iid We(�; �) random variables satis�esP[X�n > x℄ = ne��x�on = e�n�x� ;again Weibull but now with the X� �We(�; n�) distribution. For (X�n� bn)=an to have a limitingdistribution we need P�X�n � bnan > z� = e�n�(bn+anz)�to onverge as n!1; evidently it will if bn := 0 and an := (n�)�1=�:= e�z� ; z > 0the We(�; 1). The minimum of n iid Be(�; �) random variables has SFP fX�n > zg = �1� Z z0 x��1(1� x)��1 dx�n� (1� (=�)z�)nfor  = �(�+ �)=�(�)�(�), so for onvergene we will need (bn + anz)� � 1=n. The hoie bn := 0and an := (�=n)1=� leads again to the We(�; 1) limiting distribution for the minimum.1.4.1 Example 4b: Beta Distribution MaximumLet fXig iid� Be(�; �) and set Yi := [1�Xi℄. Then fYig iid� Be(�; �) and X�n = 1� Y�n, soP�X�n � bnan < z� = P�Y�n � (1� bn)an > �z�� e�(�z)� ; z < 0for bn := 1 and an := (�=n)1=�, with  as before, now for z < 0. This is alled the reversed Weibulldistribution, with df and pdf G(z j �) = e�(�z)� z < 0 (3)g(z j �) = (�z)��1e�(�z)�1fz<0g;5



with median m�n = �(n= log 2)�1=� inreasing to zero as n!1.Similarly the maximum X�n of n iid uniform random variables Xj � Un(L;R) on an arbitraryinterval has limiting distribution:P[a�1n [X�n � bn℄ � z℄ = P[X�n � anz + bn℄= �1� R� anz � bnR� L �n if L � anz + bn � R= (1 + z=n)n ! ez if � n � z � 0for an := (R� L)=n and bn := R, the unit Reversed We(1) Weibull. Now the median for X�n ism�n = R� (R� L)(log 2)=n;inreasing at rate 1=n to an upper bound of R. The suitably standardized minimum and maximumof n independent Be(�; �) random variables have asymptoti We(�) and reverse We(�) distribu-tions, respetively. These are typial of the maximal behavior for bounded random variables withontinuous distributions.1.5 The Three Types TheoremFisher and Tippett (1928) �rst proved that loation-sale families of these three distributions|Gumbel (1), Fr�ehet (2), and reversed Weibull (3)| are the only possible limits for maxima ofindependent random variables. That is, if there exist nonrandom sequenes an > 0 and bn 2 R anda nondegenerate distribution G suh that the maximum X�n := maxj�nXj of iid random variablesfXjg satis�es P�X�n � bnan � z�! G(z) (4)then G must be one of these three distributions: Gumbel, Fr�ehet, or reversed Weibull. Half aentury later MFadden (1978) disovered that all three of these limiting distributions ould beexpressed in the same funtional form as speial ases of a single three-parameter \GeneralizedExtreme Value" (GEV) distribution, with dfG(x;�; �; �) = exp(� �1 + ��x� �� ���1=�) (5)whih redues to the Fr�ehet with � = 1=� if � > 0, reversed Weibull with � = �1=� if � < 0,and Gumbel as � ! 0 (see Appendix A.5 on p. 17 for more details). In some ways I feel this wasunfortunate, beause now it is ommon for people to model and �t the GEV without thinking verylearly about the spei� form of their data and distributions.The key idea for the three-types theorem is to notie that any distribution G satisfying (4) mustalso have the property that for all n, the maximum of n independent random variables with dfG must also (after suitable shift and sale hanges) have df G| i.e., that for any n there existonstants an and bn suh that for all z 2 R,G(z)n = G(an z + bn):It turns out that the only df that satis�es this equation is (5).6



2 Threshold ExeedanesIn this setion we'll explore a di�erent way of looking at the same limiting distributions of maxima,the \peaks over thresholds" or \PoT" approah.As before let fXjg be iid for 1 � j � n and set1 Tj := j�1=2n 2 (0; 1). Let an and bn be realnumbers and set Yj := anXj + bn. The vetor N(Ri) of the numbers of points (Tj ; Yj) in disjointretangles Ri := (si; ti℄� (ui; vi℄ with 0 � si < ti � 1 and u � ui < vi � 1 will have a multinomialdistribution with parameters n and ~p, where2pi � (ti � si) �F (anvi + bn)� F (anui + bn)� :For suÆiently large u and n, the fN(Ri)g will be approximately independent Poisson randomvariables, with means �i = npi:Here we look for hoies of an and bn for whih �i has a simple form, and then exploit it.2.1 Example 1: Weibull DistributionIf P[Xj > x℄ = e��x� for x > 0, then for the hoie bn := [��1 log n℄1=� and an := bn=(� log n) wehave for all large enough z,n[1� F (anz + bn)℄ = n exp �� �(anz + bn)��= n exp �� log n(1 + z=� logn)��= n exp �� log n(1 + z= log n+ o(1= log n))�� e�z;so fTj ; Yj = (Xj � bn)=ang have approximately the Poisson distribution on (0; 1℄�R with intensitymeasure �(dt dy) = dt e�ydy (illustrated in Figure (1)). A similar approah with suitable an, bnworks for any other distribution in the Gumbel domain.The maximum Mt := maxfYj : Tj � tg is a non-dereasing stohasti proess on the unit interval0 < t � 1, with df Ft(z) = P[Mt � z℄= P[No Poisson points in (0; t℄ � (z;1)℄= e�te�z ;the Gumbel distribution. The events fMt � zg and nX�bnt � anz + bno are idential.2.1.1 Related Max-Stable ProessLet f(Tj ; Yj)g be the points of a Po(dt e�ydy) random �eld on all of R
d � R+, and let f(t) be anypositive funtion with �nite Laplae transform. De�ne a random proess byZ(t) := supj fYj=f(Tj � t)g:1The following results would be idential if instead we took fTjg iid� Un(0; 1).2The approximation would be exat for fTjg iid� Un(0; 1).7
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Figure 1: Simulation of 1000 saled Weibull draws. Horizontal line is at 95% quantile. Cumulativemaximum Mt is shown as dotted line.If f(t) =P ai1Ai(t) is a simple funtion, thenP[Z(t) � z℄ =Yi P� supj fYj=ai � z : Tj � t 2 Ai�=Yi P�No Poisson pts in (Ai + t)� (aiz;1)�=Yi exp �� jAije�biz�= exp��Z e�zf(s)ds� ;so Z(t) is a stationary proess. For any (not neessarily simple) positive funtion f(t) on R
d, thesame identity follows from LDCT.
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2.2 Example 2: Pareto DistributionIf P[Xj > x℄ = ��x�� for x > �, then for the hoie an := �n1=� and bn := 0 we have for all largeenough z, n[1� F (anz + bn)℄ = n���(�n1=�z)���= z��;so fTj ; Yj = (Xj�bn)=ang have approximately the Poisson distribution on (0; 1℄�R+ with intensitymeasure �(dt dy) = dt �y���1 dy. A similar approah with suitable an, bn works for any otherdistribution in the Fr�ehet domain.
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Figure 2: Simulation of 1000 saled Pareto draws. Horizontal line is at 95% quantile. Cumulativemaximum Mt is shown as dotted line.The maximum Mt := maxfYj : Tj � tg is a non-dereasing stohasti proess on the unit interval0 < t � 1, with df Ft(z) = P[Mt � z℄= P[No Poisson points in (0; t℄ � (z;1)℄= e�tz�� ;the Fr�ehet distribution. The events fMt � zg and �X�bnt � anz + bn	 are idential.Note that the sum of the fYj : Tj � tg will be �nite almost-surely if R10 (z ^ 1)�z���1 dz < 1,9



i.e., if 0 < � < 1; in that ase the non-dereasing proessSt :=XfYj : Tj � tgis a fully-skewed �-Stable SII proess with distribution� StA ��; � = 1;  = t�(1��) os ��2 ; Æ = 0�and the fYjg are the \jumps" of St. A similar representation holds for 1 � � < 2, but \ompen-sation" is required (sort of like subtrating an in�nite drift from St). There is no �-Stable proessfor � > 2, although the onnetion between Fr�ehet distribution and the Poisson point proessremains.2.2.1 Related Max-Stable ProessLet f(Tj ; Yj)g be the points of a Po(dt �y���1 dy) random �eld on all of R
d � R+, and let 0 �f(t) 2 L�(Rd; dt). De�ne a random proess byZ(t) = supj fYjf(t� Tj)g:If f(t) =P ai1Ai(t) is a simple funtion, thenP[Z(t) � z℄ =Yi P� supj fYj ai � z : t� Tj 2 Ai�=Yi P�No Poisson pts in (t�Ai)� (z=ai;1)�=Yi exp �� jAij(z=ai)���= exp��z�� Z f(s)�ds� ;so Z(t) is a stationary proess with a Fr�ehet Fr��; kfk��� distribution. For non-simple 0 � f 2 L�,the same identity follows from LDCT.2.3 Example 3: Beta DistributionIf Xj iid� Be(�; �) then for small �, x��1 � 1 for x > 1� � and soP[Xj > 1� �℄ � �(�+ �)�(�)�(�) Z 11�� (1� x)��1 dx= ���B(�; �) ; B(�; �) := �(�)�(�)�(�+ �) :10



For an := (�B(�; �)=n)1=� and bn := 1, we havenP[Xj > anz + bn℄ � n�B(�; �) (1� anz � bn)�= (�z)� ; z < 0so fTj ; Yj = (Xj�bn)=ang have approximately the Poisson distribution on (0; 1℄�R� with intensitymeasure �(dt dy) = dt �(�y)��1 dy. A similar approah with suitable an, bn works for any otherdistribution in the Reverse Weibull domain.The maximum Mt := maxfYj : Tj � tg is a non-dereasing stohasti proess on the unit interval0 < t � 1, with df Ft(z) = P[Mt � z℄= P[No Poisson points in (0; t℄ � (z;1)℄= e�t(�z)� ; z < 0;the reversed Weibull distribution. The events fMt � zg and nX�bnt � anz + bno are idential.The minimum of n iid Be(�; �) random variables an be studied in the same way; for an :=(�B(�; �)=n)1=� and bn := 0, the points fTj ; Yj = (Xj � bn)=ang have approximately the Poissondistribution on (0; 1℄ � R+ with intensity measure �(dt dy) = dt �y��1 dy, and the umulativeminimummt = minfYj : Tj � tg is a non-inreasing stohasti proess satisfying P[mt > z℄ = e�tz�for z � 0, the usual (un-reversed) Weibull.2.3.1 Related Max-Stable ProessLet f(Tj ; Yj)g be the points of a Po(dt �y��1 dy) random �eld on all of R
d�R+, and let 0 < f(t) 2L�(Rd; dt). De�ne a random proess byZ(t) = infj fYj=f(t� Tj)g:If f(t) =P ai1Ai(t) is a simple funtion, thenP[Z(t) > z℄ =Yi P� supj fYj=ai > z : t� Tj 2 Ai�=Yi P�No Poisson pts in (t�Ai)� (0; z ai℄�=Yi exp �� jAij(z ai)��= exp��z� Z f(s)�ds� ;so Z(t) is a stationary proess with a WeibullWe��; kfk��� distribution. For non-simple 0 � f 2 L�,the same identity follows from LDCT. 11



3 PoT InfereneDistribute points fyjg aording to Po��(dy)� and �x u in the support of �. Let J be the numberof points Yj > u (or Yj < u for the Weibull ase), for �(dy) = �y���1 dy (Fr�ehet) or �(dy) =�y��1 dy (Weibull) on R+, or �(dy) = e�y dy (Gumbel) on R. Denoting the density of �(dy) by�(y), we an express the joint pdf for J and the J threshold exeedanes fxjg asL(�; ; a; b) = a�k Yj�J����xj � ba �� exp�����u� ba ;1��and regard it as a likelihood funtion for �, , and the sale and loation parameters a, b. It anprobably be used to get MLEs and Fisher Information and maybe onjugate and Je�reys' priors.The rate �u of exeedanes of level u may also be interesting.4 Multivariate EVTIn many appliation areas the problem arises of studying the extremes for random vetors. Ex-amples inlude the daily pries or returns of multiple stoks, funds, indies, or other �nanialinstruments; preipitation levels at multiple loations; the size and transmission speed of internetstreams; or wind speeds and wave heights at vulnerable loations. Extreme value theory is muhless well-developed for multivariate random vetors than it is for univariate quantities.The ustomary approah to studying the distribution of extremes for random vetors begins bytransforming eah omponent of the vetor to a standard EV distribution (often the \unit Fr�ehet"with df G(x) = exp(�1=x)), then exploring dependene among the omponents. The initialtransformation is most often performed parametrially by estimating the three parameters of theGEV separately for eah dimension; then transforming to uniformity by the CDF for that GEV(usually ignoring unertainty in the parameter estimation), then to unit Fr�ehet by the inverseCDF G�1(u) = �1= log u.4.1 Asymptoti Dependene & IndependeneLet (X;Y ) be a two-dimensional random vetor with unit Fr�ehet marginal distributions. Theextremal index, denoted � by some authors (suh as Smith and Weissman, 1994), and � by others(inluding Coles et al., 1999, whom we follow here), is� = limz!1P[Y > z j X > z℄ (6)= limz!1 P[X > z; Y > z℄1� exp(�1=z) = limz!1P[X > z j Y > z℄:This expression is both symmetri in X and Y , and invariant under (idential) omponent-wisemonotone transformations.Evidently �, when it exists, takes values between 0 and 1. The omponents X and Y are alledasymptotially independent if � = 0. Surprisingly (for most of us, anyway), every nondegeneratebivariate normal distribution (even one with orrelation � = 0:9999) is asymptotially independent.12



If we take the monotone transformation to unit No(0; 1) marginals with ovariane � < 1, thenY j X � No��X; 1� �2� soP[Y > z j X = x℄ = Ph Y � �xp1� �2 > z � �xp1� �2 i = ���z + �xp1� �2�P[Y > z j X > z℄ = 1�(�z) Z 1z �� �x� zp1� �2� '(x) dx� 1z�� (�� 1)zp1� �2�! 0 as z !1for any � < 1.Any value of � 2 [0; 1℄ is possible. To see this, take 0 � � � 1 and onsider the \bivariate logistimodel" with df G(x; y) = exp�� hx�1=� + y�1=�i��for � > 0, and G(x; y) = exp �� 1=min(x; y)� (the limit) for � = 0. Evidently X and Y eah haveunit Fr�ehet marginals (take the limits x!1 and y !1), and� = limz!1 P[X > z; Y > z℄P[X > z℄= limz!1 1� P[X � z℄� P[Y � z℄ + P[X � z; Y � z℄1� P[X � z℄= limz!1 1� 2G(z) +G(z; z)1�G(z)= 2� limz!1 1�G(z; z)1�G(z)= 2� limz!1 1� exp(�2�=z)1� exp(�1=z) = 2� 2�by L'Hôpital's rule. This ranges from 0 to 1 as � ranges from 1 to 0.4.2 Multivariate EV DistributionsLet f(Xi; Yi)g be iid random vetors in R
2 with Fr�ehet marginals and, for n 2 N, denote theomponent-wise maxima by:Mn := (X�n; Y �n ); X�n := max1�i�nXi; Y �n := max1�i�nYi:Then P[X�n=n � z℄ = P[X1 � nz℄n = �e�1=nz�n = e�1=zand similarly P[Y �n =n � z℄ = e�1=z , so both marginals of Mn=n are unit Fr�ehet.Theorem 1 If there exists a non-degenerate bivariate distribution G(x; y) suh that Mn=n )G(x; y) as n!1, i.e., that P [X�n � nx; Y �n � ny℄! G(x; y);13



then G(x; y) = e�V (x;y) (7)for a nonnegative funtion V : R
2+ ! R+ of the formV (x; y) = 2Z�1 max��1x ; �2y � H(d�) (8)for some probability measure H(d�) on the unit simplex �1 � R

2+ with meanZ�1 �H(d�) = �12 ; 12� : (9)Every suh \spetral measure" H gives rise to a bivariate extreme value distribution; below we'llmotivate this by showing how H arises and where (8) omes from. From Eqns (7, 8), the marginaldistribution funtion for X must be G(x;1) = exp � � V (x;1)� = exp � � 2 R�1 �1H(d�)=x,so (9) is simply a standardization ondition ensuring that X and Y have unit Fr�ehet marginaldistributions. Meanwhile, let's set G(x) := exp(�1=x) and note that the extremal index of (6) analso be alulated as � = limu!1 �(u) for�(u) : = P[G(X) > u; G(Y ) > u℄P[G(X) > u℄= 1� P[G(X) � u℄� P[G(Y ) � u℄ + P[G(X) � u; G(Y ) � u℄P[G(X) > u℄= 1� 2u+ P[G(X) � u; G(Y ) � u℄1� u= 2� 1� P[G(X) � u; G(Y ) � u℄1� u= 2� logP[G(X) � u; G(Y ) � u℄log u +O(1� u)sine log(1 � �) = �� + O(�2) for � � 0. With u = G(z), or z = �1= log u, we have P[G(X) �u; G(Y ) � u℄ = P[X � z; Y � z℄ = G(z; z) = exp �� V (z; z)� so�(u) � 2� �V (z; z)�1=z = 2� zV (z; z)and by (8) in the limit we have � = 2� 2Z�1 max(�1; �2)H(d�):This will be zero if and only if max(�1; �2) is one on the support of H, i.e., if and only if H issupported entirely on the boundary ��1 = f(0; 1); (1; 0)g.4.3 Poisson ConnetionLet H be a probability measure on �1 satisfying (9), and onsider a Poisson random measure
N(dx dy) on the �rst quadrant whose intensity an be written 2H(d�)r�2dr in polar oordinates14



r = x+ y, � = (x; y)=r. Let X� and Y � denote the maxima of the x and y oordinates of the masspoints of N(dx dy), respetively. For x; y > 0 the event that [X� � x; Y � � y℄ is just the eventthat N assigns zero points to �[0; x℄� [0; y℄�. We an ompute this in polar oordinates asP[X� � x; Y � � y℄ = exp(�Z�[0;x℄�[0;y℄� 2H(d�) r�2dr)= exp(�Z(r�1>x) k (r�2>y) 2H(d�) r�2dr)= exp(�Zr>min(x=�1;y=�2) 2H(d�) r�2dr)= exp��Z�1 2min(x=�1; y=�2) H(d�)�= exp��2Z�1 max��1x ; �2y �H(d�)� ;exatly the same as G(x; y) from (7). Thus for large n the extremes of the vetors f(Xj=n; Yj=n)g,1 � j � n behave like the extremes of a Poisson point loud with intensity measure 2H(d�)r�2dr.In d � 2 dimensions the same things work, of ourse, with Poisson intensity measure dH(d�)r�2on R
d+ = �d�1 � R+.Coles et al. (1999) also de�ne a seond index�� := limz!1 2 logP[X > z℄logP[X > z; Y > z℄ � 1;taking values in the interval [�1; 1℄, whih depends on the minimum of X;Y in the tails; they arguethat it measures a degree of dependene for asymptotially independent variables (those for whih� = 0). It vanishes for independent X;Y , and takes the value +1 for fully-dependent X � Y .
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A Appendix: A Few Less Familiar DistributionsSeveral distributions pop up when exploring extremes that are less studied than the usual suspets;here we ollet a bit about them.A.1 ParetoIf U � Un(0; 1) and � > 0, then X = U�1=� has the Pareto distribution taking all values in (1;1).The survival funtion (SF) and density funtion (pdf) areP[X > x℄ = P[U�1=� > x℄= P[U < x��℄= x��; x > 1f(x) = �x���11fx>1g:This is the prototype \heavy-tailed" distribution, whose SF and pdf fall o� like powers of x (insteadof the exponential fall-o� typial of most ommonly-studied distributions). The mean is in�nite for� � 1, and 1=(� � 1) <1 for � > 1; the variane in�nite for � � 2.It is frequently taken to be part of a two-parameter sale family (Y := �X � Pa(�; �), taking allvalues in (�;1)) and less ommonly part of a three-parameter loation/sale family.A.2 GumbelIf Y � Ex(1) is a standard exponential random variable, then X = � log Y has the standard Gumbeldistribution taking all values in R. The CDF and pdf areP[X � x℄ = P[Y � e�x℄= e�e�xf(x) = e�x�e�xand the mean is EX = e � 0:5772, the Euler-MLaren onstant. Sine the mode is zero, thedistribution is skewed to the right; the tail probabilities fall o� exponentially as x!1, but muhfaster as x! �1. It is ommonly taken to be part of a two-parameter loation/sale family.A.3 Fr�ehetIf Y � Ex(1) is a standard exponential random variable and � > 0, then X = Y �1=� has thestandard Fr�ehet distribution taking all values in R+. The PDF and pdf areP[X � x℄ = P[Y � x��℄; x > 0= e�x��f(x) = �x���1e�x��1fx>0gand the mean is EX = �(1 � 1=�) for � > 1, or in�nity for � � 1. The variane is in�nite for� � 2. The mode (1 + 1=�)�1=� and median (log 2)�1=� are well-de�ned for all � > 0.16



This too is a heavy-tailed distribution, with SF and df falling o� at the same rates as the Pa(�).It is ommonly taken to be part of a three-parameter loation/sale family.A.4 WeibullIf Y � Ex(1) is a standard exponential random variable and � > 0 then X = Y 1=� has the Weibulldistribution taking all values in R+. The SF and pdf areP[X > x℄ = P[Y > x�℄; x > 0= e�x�f(x) = �x��1e�x�1fx>0gand the mean EX = �(1 + 1=�) and variane are �nite for all � > 0.It is ommonly taken to be part of a two-parameter sale family, with SF S(x) = exp(��x�) andhene hazard funtion h(x) = f(x)=S(x) = ��x��1 exp (��x�)exp (��x�) = ��x��1;a monomial in x that an be either inreasing (for � > 1) or dereasing (for � < 1) to model failuretimes for systems with either inreasing or dereasing instantaneous hazard.If X � We(�) has the Weibull distribution then Z := �X has the reversed Weibull distribution,with pdf g(z) = �(�z)��1e�(�z)�1fz<0g:A.5 GEVMFadden (1978) disovered that loation/sale families built on the Gumbel, Fr�ehet, and reversedWeibull distribution were all speial ases of the Generalized Extreme Value distribution, withonventional CDF parameterization given by:G(x;�; �; �) = exp(� �1 + ��x� �� ���1=�) (5)for those x satisfying 1 + �(x� �)=� > 0, and pdf:g(x;�; �; �) = 1� �1 + ��x� �� ���1�1=� exp(� �1 + ��x� �� ���1=�) :Note the range of GEV depends on the sign of �: X 2 (���=�;1) for � > 0, X 2 R for � = 0, andX 2 (�1; � � �=�) for � < 0. Evidently (5) is a loation/sale family built on a standard GEVdistribution (� = 0, � = 1) with CDF and pdf:G(x; �) = expn� (1 + �x)�1=�og(x; �) = [1 + �x℄�1�1=� expn� (1 + �x)�1=�o :17



The standard Gumbel, Fr�ehet, and reversed Weibull an eah be expressed in terms of G(x;�; �; �)from (5): Fr�ehet: exp (�x��) = G(x; � = 1; � = 1� ; � = 1�); � > 0Gumbel: exp (�e�x) = G(x; � = 0; � = 1; � = 0); �=0Rev Weibull: exp (�(�x)�) = G(x; � = �1; � = 1� ; � = � 1�); � < 0:Note that if fXig iid� GEV(�; �; �) then X�n := max1�i�nfXig � GEV(��; ��; �) for �� := �+�(n� � 1)=�and �� := �n�, i.e., the maximum of the �rst n also has the GEV distribution with the same shapeparameter �, larger loation parameter �� > �, and sale �� that is larger (resp, smaller) than thatof Xi if � > 0 (resp, � < 0). This property (that G(x;�; �; �)n = G(x;��n; ��n; �) for some ��n and��n, for eah n 2 N) haraterizes the GEV, and is the basis for the Three Types theorem.A.6 GPDIf X � GEV(�; �; �) for � > 0 with CDFG(x;�; �; �) = exp(� �1 + ��x� �� ���1=�) (5)then for y > 0 the exeedanes Y = [X � u℄ of a high level u� �� �=� satisfyP[Y > y j Y > 0℄ = P[X > y + u j X > u℄= 1� expn� �1 + � �y+u��� ���1=�o1� expn� �1 + � �u��� ���1=�o� �1 + � �y+u��� ���1=��1 + � �u��� ���1=�= �� + � (y + u� �)� + � ( u� �) ��1=�= [1 + �y=�̂℄�1=� ; w/ �̂ := � + � (u� �) :This is the generalized Pareto distribution GPD(�; �̂), with CDF H(y) = 1 � [1 + �y=�̂℄�1=�+ fory > 0 and mean E[Y ℄ = Z 10 �H(y) dy = �̂=(1 � �); � < 1(or in�nity if � � 1), so for 0 < � < 1 (i.e., the Fr�ehet ase with � > 1),E[X � u j X > u℄ � � � ��1� � + �1� � u = �1� � + �1� � (u� �)is linear in u with a slope that determines �. The variane of the GPD is also available in losedform, in�nite for � � 12 and, for 0 < � < 12 ,V[X j X > u℄ = V[Y ℄ = �̂2(1� �)2(1� 2�) = E[Y ℄21� 2� :18



For 0 < � < 1, when X has a Fr�ehet distribution, the GPD is a saled (by �=�̂) and o�set (tozero) version of the ordinary Pareto distribution. It has the interesting property that, for any v > 0and y > 0, P[Y > y + v j Y > v℄ = [1 + �(y + v)=�̂℄�1=�[1 + �(v)=�̂℄�1=� = � �̂ + �v + �y�̂ + �v ��1=�= [1 + �y=�̂0℄�1=�; �̂0 := �̂ + �v;i.e., the onditional distribution of (Y � v) given [Y > v℄ is again GPD(�; �̂0).This is the key to estimating the shape � and threshold u0 above whih extremes are modeledsuÆiently well by the GPD, a blak art. A plot of the empirial \Mean Residual Life" (MRL) Y :=(X�u), plotted against u, should be approximately linear above some threshold u0. Unfortunatelythe variation around that line gets wider and wider with inreasing u (beause the MRL is estimatedon the basis of fewer and fewer extreme events as u inreases). The variane and mean alulationsabove should make it possible to generate error bars.A ommon estimator of � � 1=� in the Fr�ehet ase is \Hill's Index" (Hill, 1975). Let �X(i)	 bethe order statistis (with X(1) the largest) for an iid sample of n 2 N observations fXjg and, foreah 1 � k � n, set HXk;n := 1k kXi=1 log X(i)X(k+1) :This is just the MLE based on the observations that exeed an order statisti. Resnik and St�ari�a(1998) showed it to be onsistent as k !1 and n=k !1, even for many dependent sequenes.
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