
Introdution to MartingalesRobert L. WolpertDepartment of Statistial SieneDuke University, Durham, NC, USAInformally a martingale is simply a stohasti proess Mt de�ned on some probability spae(
;F ;P) and indexed by some ordered set T that is \onditionally onstant," i.e., whosepredited value at any future time s > t is the same as its present value at the time t ofpredition. The set T of possible indies t 2 T is usually taken to be the nonnegativeintegers N0 or the nonnegative reals R+, although sometimes Z or R or other ordered setsarise. Formally we represent what is known at time t in the form of an inreasing family of�-algebras (or a �ltration) fFtg � F , possibly generated by some proess fXs : s � tg oreven by the martingale itself, FMt = �fMs : s � tg (this one is alled the natural �ltration).We require that EjMtj <1 for eah t (so the onditional expetation below is well-de�ned)and that Mt = E[Ms j Ft℄; t < s:It follows that fMtg is adapted to fFtg, i.e.,Mt is Ft-measurable for eah t. For integer-timeproesses (like funtions of Markov hains) it is only neessary (by the tower property) totake s = t + 1. Usually we take Ft = �[Xi : i � t℄ for some proess of interest Xt (perhapsMt itself, although in general Ft an be bigger than that) and writeMt = E[Mt+1 j X0; :::; Xt℄:There are several \big theorems" about martingales that make them useful in statistis andprobability theory. Most of them are simple to prove for disrete time T = N0, and morehallenging for ontinuous time T = R+, so our text (Resnik, 1998, hap. 10) overs onlyinteger-time martingales.1 Optional Stopping TheoremA random \time" � 2 T is an Ft-stopping time or Markov time if [� � t℄ 2 Ft for eaht 2 T ; informally, � \doesn't depend on the future." For disrete time sets T , � is a stoppingtime if and only if [� = t℄ 2 Ft for eah t 2 T (an you prove that?).1



STA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertIf � is a stopping time and if Mt is a martingale, then Mt^� is a martingale too. The proofis easy for integer-time martingales:E[M(t+1)^� j Ft℄ = E[M�1[��t℄ +Mt+11[�>t℄ j Ft℄=M�1[��t℄ + 1[�>t℄E[Mt+1 j Ft℄=M�1[��t℄ + 1[�>t℄Mt=Mt^� :1.1 Appliation: Simple Random WalksFix 0 < p < 1 and let f�jg be iid �1-valued random variables with P[�j = 1℄ = p andP[�j = �1℄ = q := (1� p) (hene E�j = p� q and V�j = 4pq). Set Fn := � f�j : j � ng, letx 2 Z, and set: Xn := x +Xj�n �j; (1)a random walk that is either symmetri (if p = 12) or not (if p 6= 12). Set � := (p�q) andonsider for n 2 N0 = f0; 1; : : :g the three proessesM (1)n = Xn � �n (2a)M (2)n = (Xn � �n)2 � 4pq n (2b)M (3)n = (q=p)Xn (2)Verify that eah of these is a martingale by omputing E[M (i)n+1 j Fn℄ = M (i)n and ap-plying the tower property and indution. For integers a � x and b � x, verify that� := inf �t � 0 : Xt =2 (a; b)	 is a stopping time, �nite a.s by Borel-Cantelli. Let W =[� < 1℄ \ [X� = b℄ be the event that Xt exits (a; b) to the right, i.e., that Xt � b beforeXt � a. If p = 12 = q (the symmetri ase) then � = 0 and by DCTx = E[M (1)0 ℄ = limt!1E[M (1)t^� ℄= E[M (1)� ℄ = bP[W ℄ + aP[W ℄= (b� a)P[W ℄ + a; soP[W ℄ = x� ab� a : (3)Thus in a \fair" game the odds of reahing b before falling to a, starting at x 2 (a; b),inreases linearly from zero at a to one at b. For an un-fair game, i.e., if p 6= q, then
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STA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertSTA 711 Martingales R L Wolpert(p=q)b 6= (p=q)a and again by DCT,(q=p)x = E[M (3)0 ℄ = limt!1E[M (3)t^� ℄ = E[M (3)� ℄= (q=p)bP[W ℄ + (q=p)aP[W ℄= �(q=p)b � (q=p)a�P[W ℄ + (q=p)a; soP[W ℄ = (q=p)x � (q=p)a(q=p)b � (q=p)a= (p=q)b�x � (p=q)b�a1� (p=q)b�a (4)� (p=q)b�x if b� a and p < 12 < q.For example, for 1:1 bets in US roulette whih win with probability p = 9=19 and lose withprobability q = 10=19, the hane of winning by reahing b = $100 before falling to a = $0with one-dollar bets beginning at x = $90 is P[W ℄ = (0:910 � 0:9100)=(1� 0:9100) = 0:34866,and the hane of reahing $100 before $0 starting at x = $50 is P[W ℄ = (0:950�0:9100)=(1�0:9100) = 0:00513, while these would be 90% and 50% in a fair game.Martingale M (2)t an help us �nd the expeted length of a fair game. For p = 12 = q, � = 0and 4pq = 1, so x2 = M (2)0 = limt!1E[M (2)t^� ℄ = E[M (2)� ℄= E[X� 2 � � ℄= b2P[W ℄ + a2P[W ℄� E[� ℄= b2(x� a) + a2(b� x)b� a � E[� ℄= (a+ b)x� ab� E[� ℄ soE[� ℄ = (a+ b)x� ab� x2 = (b� x)(x� a): (5)The expeted time until Xt = 100 or Xt = 0 starting at x = 90 is 900 turns and startingat x = 50 is 2500 turns, or 30 and 83 hours respetively at a typial rate of two turns perminute. For unfair games we an �nd E� from M (1)� :x = M (1)0 = limt!1E[M (1)t^� ℄ = E[M (1)� ℄= E[X� � �� ℄= b[(q=p)x � (q=p)a℄ + a[(q=p)b � (q=p)x℄(q=p)b � (q=p)a � �E[� ℄; soE� = (b� x)[(q=p)x � (q=p)a℄ + (a� x)[(q=p)b � (q=p)x℄�[(q=p)b � (q=p)a℄= (b� x)[(p=q)b�x � (p=q)b�a℄� (x� a)[1� (p=q)b�x℄(p� q)[1� (p=q)b�a℄ (6)Page 3Page 3Page 3



STA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertSTA 711 Martingales R L Wolpertor approximately E� � (x � a)=(q � p) for a � b and p < q. For US roulette, E� = 1047:5for x = 90 (with a slim 35% hane of winning) and E� = 940:258 for x = 50 (with about a1=200 hane). Larger bets make the game go quiker and improve the hane of winning;for $10 bets, set a = 0, b = 10 and try x = 5, x = 9 to see the probability of winning inreaseto P[W ℄ = 37% or 87% with E[� ℄ = 24:46 or 10:17, respetively, muh loser to the values50%, 90% for P[W ℄ and 25, 10 for E� in a fair game. Even faster (and more favorable) is theoptimal strategy of bold play, betting (x� a)^ (b� x) eah time; for x = 50 this amounts tobetting all $50 at one (E[W ℄ = 9=19 = 47:37%, E� = 1) while for x = $90, E[W ℄ = 87:94%.Upon taking the limit as a ! �1 in Eqns (3, 4) we �nd that P[Xt � b for any t < 1℄has probability one if p � 12 , but for p < 12 the probability is (p=q)b�x < 1; thus even anin�nitely-rih patron has only a 0:910 = 34:8678% hane of winning $10 in US roulette withsuessive $1 bets. The expeted time to reah b > x is in�nite for p � 12 , but for p > 12 theexpeted time is �nite, E[� ℄ = (b� x)=(p� q) <1.1.1.1 Other Random WalksMore generally we an onstrut a proess Xn as in (1) for any iid f�jg � L2 and martingalesM (k)n as in (2), with � = E�j in (2a), replaing 4pq with �2 = V�j in (2b), and replaing(q=p) with et� where t� 6= 0 is the solution to M(t�) = 1 for the MGF M(t) of �j (t� < 0 if� > 0, t� > 0 if � < 0). Now the probabilities of Eqns (3, 4) and expetations of Eqns (5, 6)will only be approximate, sine X� won't be exatly a or b. Abraham Wald (1945) studiedthe disrepany in some detail, motivated by the following appliation.1.2 The SPRT Sequential Statistial TestIf iid random variables fYjg are known to ome from one of two possible distributions, withdensities (w.r.t. any �-�nite referene measure) f0 and f1, the likelihood ratio (against theNull) for the �rst n observations is �n =Yj�n f1(Yj)f0(Yj) :In Wald's Sequential Probability Ratio Test (SPRT), one observes data sequentially until�n passes an upper boundary U 2 (1;1) (in whih ase the null hypothesis H0 : Yj iid�f0(y) dy is rejeted) or a lower boundary L 2 (0; 1) (in whih ase the test fails to re-jet H0). The test has optimality properties (Wald and Wolfowitz, 1948) similar to thoseof �xed-sample-size likelihood ratio tests (Neyman and Pearson, 1933). The logarithmXn = log�n is a random walk under both f0 and f1, and � := inf fn : �n =2 (L; U)g =inf fn : Xn =2 (a = logL; b = logU)g is Wald's stopping time, so the results of Setion (1.1.1)apply. In addition, �n itself is a martingale under f0, as is ��1 under f1, giving onvenienttools for bounding the probability of inorret hypothesis-test results or the expeted dura-tion of a sequential test. A Bayesian with prior P[H0℄ = �0 would report posterior proba-bility P[H0 j Data ℄ = (1 + �1�0�� )�1, or about �0=(�0 + �1a) if X� � a and �0=(�0 + �1b) ifPage 4Page 4Page 4



STA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertX� � b, lending guidane about the seletion of a and b. By Doob's maximal inequality, for0 < �; � < 1 the SPRT with L = � and U = 1=� will satisfy P[ Rejet H0 j H0℄ � � andP[ Rejet H0 j H1℄ � 1� �, the lassial Frequentist error bounds.2 Martingale Path RegularityIfMt is a martingale and a < b are real numbers, denote by �(t)[a;b℄ the number of \uprossings"of the interval [a; b℄ by Ms prior to time t, the number of times it passes from below a toabove b. Then: E h�(t)[a;b℄i � EjMtj+ jajb� aand, in partiular, martingale paths don't osillate in�nitely often| they have left and rightlimits at every point. This is also the key lemma for proving the Martingale ConvergeneTheorem below. Here's the idea, attributed to both Doob and to Snell:Set �0 = 0 and, for n 2 N, de�ne�n = infft > �n�1 : Mt � ag�n = infft > �n : Mt � bg;or in�nity if the indiated event never ours (i.e., we take inff;g = 1). De�ne a proessYt by Yt =Xn2N[Mt^�n �Mt^�n ℄:Starting with the �rst time �1 that Mt � a, Yt aumulates the inrements of Mt until the�rst time �1 that Mt � b; the proess ontinues if the martingaleMt � a again falls below a(at time �2), and so forth. All the terms vanish for n large enough that �n > t, so there areat most 1 + �(t)[a;b℄ non-zero terms, eah at least [b� a℄ exept possibly the last if �n < t < �nfor some n. Then Yt =Xn2N[Mt^�n �Mt^�n ℄� (b� a)�(t)[a;b℄ + [Mt � a℄EYt � (b� a)E�(t)[a;b℄ + E[Mt � a℄� (b� a)E�(t)[a;b℄ � E(Mt � a)�� (b� a)E�(t)[a;b℄ � EjMtj � jaj:By the Optional Stopping Theorem, Yt is a martingale and hene EYt = EY0 = 0; it followsthat E�(t)[a;b℄ � �EjMtj+ jaj�=(b� a).The important onlusion is that E�(t)[a;b℄ <1, so �(t)[a;b℄ is almost-surely �nite| leading to:Page 5Page 5Page 5



STA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertTheorem 1 (Martingale Path Regularity) Let M0t be a martingale with index set T =
R+. Then with probability one, M0t has limits from the left and from the right at every pointt 2 T , and at eah t is almost-surely equal to the right-ontinuous proess Mt � lims&tM0s .If the �ltration is right-ontinuous, Ft = \s>tFs, then Mt is also a martingale.If Mt is uniformly bounded in L1, EjMtj �  <1 for all t 2 T , then by Fatou's lemma wean even take t!1 so E�(1)[a;b℄ � [ + jaj℄=(b� a) <1, and the number of times �(1)[a;b℄ thatMt ever rosses the interval [a; b℄ is almost-surely �nite. This is the key for proving:3 Martingale Convergene TheoremsTheorem 2 (Martingale Convergene Theorem) Let Mt be an L1-bounded martingale(so for some  2 R+ it satis�es EjMtj �  for all t 2 T ). Then there exists a random variableM1 2 L1 suh that Mt !M1 a.s as t!1. If fMtg is Uniformly Integrable (for example,if EjMtjp � p for some p > 1 and p 2 R+), then also Mt !M1 in L1.Proof. De�ne M1 := lim inft!1Mt and M1 := lim supt!1Mt. Suppose (for ontradi-tion) that P[M1 = M1℄ < 1. Then there exist numbers a < b for whih P[M1 < a < b <M1℄ > 0. But �(1)[a;b℄ = 1 on this event, ontraditing E�(1)[a;b℄ � � + jaj�=(b� a) < 1. Theresult about UI martingales now follows by the UI onvergene theorem.Corollary 1 Let Mt be a martingale and � a stopping time. ThenEM0 = EM�if either fMtg is uniformly integrable, or if E� < 1 and jMs �Mtj � js � tj a.s for some <1.Proof. Obviously M� = limt!1Mt^� a.s; the family fMt^�g will be UI under either of thestated onditions.Note that some ondition is neessary in the Corollary above. The simple symmetri randomwalk S0 = 0, Sn+1 = Sn � 1 (with probability 1=2 eah) is a martingale, and � := infft :St = 1g is a stopping time that is almost-surely �nite, butE[S� ℄ = 1 6= 0 = E[S0℄so the onlusion of Corollary 1 fails. Note that Sn is not UI here, and jSs � Stj � js� tj islinearly bounded, but E� =1. For another example, let X � Ge(12) be a geometri randomvariable with P[X = x℄ = 2�x�1 for x 2 N0, and setMt := 2t1fX�tg. ThenMt is a martingalestarting at M0 = 1, � = X + 1 = infft : Mt = 0g is a stopping time with �nite expetationE[� ℄ = 2, but E[M� ℄ = 0 6= 1 = E[M0℄:Again Mt is not UI, and this time E� <1 but jMs �Mtj is not bounded linearly in js� tj.Page 6Page 6Page 6



STA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertTheorem 3 (Bakwards Martingale Convergene Theorem) Let fMtg be a martin-gale indexed by Z or R (or just the negative half-line Z� or R�). Then, without any furtheronditions, there exists a random variable M�1 2 L1(
;F ;P) suh thatlimt!�1Mt =M�1 a.s and in L1(
;F ;P):The strong law of large numbers for i.i.d. L1 random variables Xn is a orollary| for n 2 N,de�ne Sn =Pnj=1Xj andM�n = �Xn = Sn=n; verify thatMt is a martingale for the �ltrationFt = �fMs : s � tg (note Xn is F�n+1-measurable but not F�n-measurable), and thatM�1is in the tail �eld and hene (by Kolmogorov's 0=1 law) is almost-surely onstant. Evidentlythe onstant is �, so Xn ! � a.s as n!1.4 Martingale Problem for Markov ChainsIn Setion (1.1) we found a partiular funtion �(x) = (q=p)x whih, when evaluated along therandom walk Xn, would yield a proess M (3)n = �(Xn) that was a martingale. In this setionwe onsider the general question of �nding funtions �(�) for whih �(Xt) is a martingalefor spei�ed Markov hains Xt| or, more general still, of how to reate martingales fromproesses of the form �(Xt)� At for \any" funtion �.A disrete time Markov hain is a proess Xn indexed by the nonnegative integers n 2 T :=
N0 and taking values in a disrete state spae S with the property that, for eah n 2 T ,the onditional probability P[A j Fn℄ of any \future" event A 2 Fn := � fXt : t � ng,given the \past" Fn := � fXt : t � ng, depends only on the \present" Xn| i.e., is �(Xn)-measurable. Random walks (like the simple random walk of Setion (1.1)) are importantexamples of Markov hains, but others abound. The distribution of a Markov Chain isdetermined by the initial distribution p(0)j = P[X0 = j℄ for j 2 S and the transition matrixP (t)jk = P[Xt+1 = k j Xt = j℄ for all t 2 T and pairs j; k 2 S. In the important stationaryase P (t)jk = Pjk doesn't depend on t, so p(0)j = P[Xt = j℄ for every t 2 T and n-step transitionprobabilities P[Xt+n = k j Xt = j℄ = P njk are given by simple matrix powers.Let Xn be a stationary Markov hain with transition matrix P on a disrete (but not ne-essarily �nite) state spae S. Then for �(Xn) to be a martingale we need for eah j 2 S0 = E[�(X1)� �(X0) j X0 = j℄= A�(j) :=Xk 6=j Pjk[�(k)� �(j)℄;for the operator A alled the generator of the proess. In this ase � is said to be harmoni.Even if � is not harmoni, we an still onstrut a martingale by subtrating preisely theright thing: M�(t) := �(Xt)� X0�s<tA�(Xs)Page 7Page 7Page 7



STA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertSTA 711 Martingales R L Wolpertwill always be a martingale, starting at �(X0). In fat, this property haraterizes theMarkov hain Xt ompletely, and is the modern way of de�ning the Markov proess.4.1 Martingale ProblemsIn both disrete and ontinuous time, the most powerful and general way known for on-struting Markov proesses and exploring their properties is to view them as solutions toa Martingale Problem. We desribe it for disretely-distributed proesses Xt, but similarharaterizations apply to Markov proesses with ontinuous marginal distributions.4.2 Disrete TimeLet P (t)jk be a (possibly time-dependent) Markov transition matrix on a state spae S indexedby T = N0 or T = Z, so(8j; k 2 S; t 2 T ) P (t)jk � 0 and (8j 2 S; t 2 T ) Xk2S P (t)jk = 1:Then an S-valued proess Xt indexed by t 2 T is a Markov hain with transition matrixP (t)jk if and only if it solves the disrete-time Martingale Problem: for all bounded funtions� : S ! R, the proessM�(t) := �(Xt)� �(X0)� X0�s<t Xj 6=i=Xs P (s)ij [�(j)� �(i)℄must be a martingale indexed by t 2 T . In the homogeneous ase where P (t)jk := Pjkdoesn't depend on t, the n-step transition probability is simply the matrix power P n, andthe operator
G�(i) =Xj 6=i Pij[�(j)� �(i)℄is alled the generator of the proess. If � is harmoni, i.e., G� � 0, then �(Xt) is amartingale.4.2.1 Example: Simple Random WalksFor the symmetri random walk on Z, for example, G�(x) = 12 [�(x+1)� 2�(x)+ �(x� 1)℄,half the seond-di�erene operator, so all aÆne funtions �(x) = a+ bx (and only they) areharmoni. Now we'll onsider asymmetri walks.Let Xt be the simple random walk (1) starting at X0 = x with P[�j = 1℄ = p and P[�j =�1℄ = q = 1�p with 0 < p < 1. To be harmoni a funtion � must satisfy 0 � A�(x) =p[�(x+1)��(x)℄�q[�(x)��(x�1)℄, so by indution [�(x)��(x�1)℄ = (q=p)x[�(1)��(0)℄.Summing the geometri series shows that all solutions are of the form �(x) = a+ b(q=p)x forp 6= q, and (as before) �(x) = a+ bx for p = q = 12 .Page 8Page 8Page 8



STA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertThis and the martingale maximal inequality lead to simple proofs of things about the randomwalk| for example, if p < q (so Xt is more likely to derease than inrease) and a > x, thenfor t > 0, P[ sup0�s�tXs � a℄ = P[ sup0�s�t(q=p)Xs � (q=p)a℄� (q=p)x(q=p)a = (p=q)a�x:Taking the supremum over all t > 0 (sine the bound doesn't depend on t), we see that theprobability of ever exeeding a dereases geometrially. With a little more work, we an �ndexeedene probabilities for lines a + bt too:Let b 2 R and set Yt := Xt � bt where Xt is the simple random walk of Setion (1.1). ThenY too is a Markov hain, and the funtion �(x) = rx will be harmoni for Y if r satis�es0 = A�(x) = p�(x+ 1� b)� �(x) + q�(x� 1� b)= rx�1�b[pr2 � r1+b + q℄:The term in brakets h(r) := pr2 � r1+b + qvanishes at r = 1 and tends to in�nity as r ! �1. Its derivative at r = 1 is h0(1) = (�� b)for � = (p� q) = (2p� 1); if this doesn't vanish, then there must exist another root r� 6= 1of h(r�) = 0 for whih A� � 0 and hene M�(t) := rXt�bt� is a martingale starting atM�(0) = rx� . By the Martingale Maximal Inequality (MMI, Theorem4 on p. 12), for anya; b 2 R, P � sup0�s�tfXs � bsg � a� = P � sup0�s�tfrYs� g � ra�� � rx�a� ; (7)giving a bound for the probability that the random walk Xs ever rosses the line y = a+ bs(sine the bound doesn't depend on t < 1). In the Roulette example, with p = 9=19 andb = 0 we have r� = q=p = 10=9, so (7) impliesP[Xt ever exeeds a℄ � (9=10)a�x;the same bound as before. Now, however, we have new results likeP[Xt ever exeeds (a+ t=2)℄ � (3:382975)x�afor a symmetri random walk and a � x, sine r� � 3:382975 is the solution r 6= 1 toh(r) = [12r2 � r3=2 + 12 ℄ = 0.4.2.2 General Random WalksNow let f�jg be iid from any distribution with a MGF M(t) = E[et�j ℄ that is �nite in someinterval around zero. Let Xn := x +Pj�n �j be a random walk starting at x 2 R, and letPage 9Page 9Page 9



STA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertSTA 711 Martingales R L Wolperta; b 2 R. Then for any t 2 R for whih M(t) is �nite,Yn = exp ftXn � n logM(t)gis a martingale and, for any t� suh that M(t�) = et�b, so isY �n = exp ft�(Xn � nb)g :By the MMI,P [Xn ever exeeds a+ b n℄ = P �supn�0(Xn � n b) � a�= P �supn�0 Y �n � et�a� � exp ft�(x� a)g :For example, if �j iid� No(�; �2) then M(t) = et�+t2�2=2 is �nite for all t 2 R and the equationM(t�) = et��+t2��2=2 = et�bis satis�ed for t� = 0 or t� = 2(b � �)=�2. The �rst of these gives a trivial bound but theseond gives P [Xn ever exeeds a + b n℄ � exp �2(b� �)(x� a)=�2	or, for x = � = 0 < a, simply exp f�2ab=�2g. This same bound, as it happens, applies toBrownian motion with drift. Exerise: Find a bound for the probability that a unit-ratePoisson random walk Xt ever exeeds 1 + 2t (Ans: exp(�1:256431) = 0:2846682).4.3 Continuous TimeSimilar bounds are available for Markov proesses indexed by ontinuous time T = R+, suhas Brownian motion and ontinuous-time Markov hains.Let Q(t)jk be a (possibly time-dependent) ontinuous-time Markov transition rate matrix ona disrete state spae S, i.e., a family of matries on S � S that for eah t 2 T satis�es(8j 6= k 2 S) Q(t)jk � 0 and (8j 2 S) Xk2S Q(t)jk = 0:Then an S-valued proess Xt is a Markov hain with rate matrix Q(t)jk if and only if it solvesthe ontinuous-time Martingale Problem: for all bounded funtions � : S ! R, the proessM�(t) := �(Xt)� Z t0 h Xj 6=i=XsQ(s)ij [�(j)� �(i)℄i dsPage 10Page 10Page 10



STA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertSTA 711 Martingales R L Wolpertmust be a martingale starting at M�(0) = �(x). In the homogeneous ase where Q(t)jk � Qjkdoesn't depend on t, the time-t transition probability is simply the matrix exponential P t =exp(t Q) =Pn�0 tnn! Qn, the operator
G�(i) :=Xj2S Qij[�(j)� �(i)℄is alled the (in�nitesimal) generator of the proess, and M� an be writtenM�(t) := �(Xt)� Z t0 A�(Xs) ds:If � is harmoni, then �(Xt) is a martingale. A similar approah works for proesses withontinuous marginal distribution; for Brownian Motion in R

d, for example, G�(x) = 12��(x),half the Laplaian, illustrating why funtions that satisfy G� � 0 are alled harmoni.4.3.1 Example: SII Jump ProessesThe unit-rate Poisson proess N(t) is haraterized by its initial value of 0 and its generator
G�(x) = [�(x+ 1)� �(x)℄. The sumXt =Xj ujNj(�j t)of independent Poisson proesses with rates �j > 0 and jump sizes uj 2 R is also a ontinuoustime Markov proess, with generator given by

G�(x) =Xj [�(x+ uj)� �(x)℄ �j= ZR[�(x+ u)� �(x)℄ �(du) (8)for � 2 C1b (R), for the disrete measure �(du) :=Pj ujÆ�j(du), with log h.f.logEei!Xt = ZR �ei!u � 1� �(du): (9)Atually Eqns (8, 9) ontinue to be well-de�ned and determine the distribution of a Markovproess Xt with stationary independent inrements (SII) for any �nite Borel measure �(du)on R or, sine both integrands vanish to �rst order at zero, even for in�nite \L�evy measures"�(du) that satisfy the \loal L1 ondition"ZR (1 ^ juj) �(du) <1: (10)Page 11Page 11Page 11



STA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertOne example is the gamma proess Xt � Ga(�dt; �) with L�evy measure �(du) = � u�1 e��u 1fu>0g du,whose independent inrements [Xt �Xs℄ � Ga(�(t� s); �)have gamma distributions. Another is the symmetri �-stable (S�S) proess Xt � St(�; 0; t; 0)with �(du) = �� �(�) sin(��2 ) juj���1 du, with �-stable inrements. Eqn (10) is only satis�edfor 0 < � < 1, but the approah an be extended to over the entire range of 0 < � < 2(inluding the Cauhy, � = 1) using \ompensation". Ask me if you'd like to know more.5 Maximal InequalitiesUnder mild onditions, the suprema of martingales over �nite and even in�nite intervalsmay be bounded; this makes them extremely useful for bounding the growth of proesses.The usual bounds are of two kinds: bounds on the probability that a martingale Mt (or itsabsolute value jMtj) exeeds a �xed number � 2 R in some presribed time interval, andbounds on the expetation of the supremum of jMtjp over some interval, for real numbersp � 1. Here are a few illustrative results.Theorem 4 Let Mt be a martingale and let t 2 T . Then for any � > 0,P � sup0�s�tMs � �� � ��1EM+tP � sup0�s�t jMsj � �� � ��1EjMtjProof. Let � = infft � 0 : Mt � �g. Sine both Mt and Mt^� are martingales,EMt = EMt^�= E�M�1[��t℄ +Mt1[�>t℄	� E��1[��t℄ +Mt1[�>t℄	= �P[� � t℄ + E�Mt1[�>t℄	 ; soE[Mt1[��t℄℄ � �P[� � t℄ and heneP� sup0�s�tMs � �� = P[� � t℄� ��1E[Mt1[��t℄℄� ��1E[M+t 1[��t℄℄� ��1E[M+t ℄;Page 12Page 12Page 12



STA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertSTA 711 Martingales R L Wolpertproving the �rst assertion. Sine �Mt is also a martingale, we also have:P� inf0�s�tMs � ��� � ��1E[M�t ℄; adding these together,P� sup0�s�t jMsj � �� � ��1E[jMtj℄:In fat we proved something slightly stronger (whih we'll need below). Set jM j�t :=sup0�s�t jMsj; then P fjM j�t � �g � ��1E �jMtj1fjM j�t��g� : (11)Theorem 5 For any martingale Mt and any real numbers p > 1 and q := pp�1 > 1, sups�t jMsjp � q sups�t kMskp:Proof.By Fubini's theorem, E�(jM j�t )p� = Z 10 p�p�1 P�jM j�t � �� d�� Z 10 p�p�1 ��1E �jMtj1fjM j�t��g� d�= E Z jM j�t0 p�p�2 jMtj d�= pp� 1E�jM j�t )p�1jMtj:H�older's inequality asserts that E[Y Z℄ � fEY pg1=p fEZqg1=q for any nonnegative randomvariables Y and Z; applying this with Y = jMtj and Z = (jM j�t )p�1, and noting (p�1)q = p,we get fE(jM j�t )pg1 � q E��jM j�t )p	1=q E fjMtjpg1=pfE(jM j�t )pg1�1=q = k jM j�t kp � q kMtkp = q sup0�s�t kMskp:Note that q % 1 as p & 1, so the bound blows up; to ahieve an L1 bound on EjM j�t weneed something slightly stronger than an L1 bound on EjMtj (see below).Page 13Page 13Page 13



STA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertIn summary: if Mt is a martingale and if t 2 T thenP[sups�t Ms � �℄ � ��1E[M+t ℄P[mins�t Ms � ��℄ � ��1E[M�t ℄P[sups�t jMsj � �℄ � ��1EjMtjE sups�t jMsjp � qp sups�t E�jMsjp� = qp E�jMtjp� (p > 1)E sups�t jMsj � ee� 1 sups�t E�jMsj log+(jMsj)� (p = 1)6 Doob's MartingaleFix any Y 2 L1(
;F ;P) and let Mt := E[Y j Ft℄ be the best predition of Y available attime t. Then Mt is a uniformly-integrable martingale, and Mt ! Y a.s and in L1.7 SummaryTo summarize, martingales are important beause:1. They have lose onnetions with Markov proesses;2. Their expetations at stopping times are easy to ompute;3. They o�er a tool for bounding the maxima and minima of proesses;4. They o�er a tool for establishing path regularity of proesses;5. They o�er a tool for establishing the a.s onvergene of ertain random sequenes;6. They are important for modeling eonomi and statistial time series whih are, insome sense, preditions.Examples:1. Partial sums Sn = �ni=1Xi of independent mean-zero RV's2. Stohasti Integrals. For example: let Mn be your \fortune" at time n in a gamblinggame, and let Xn be an IID Bernoulli sequene with probability EXn = p. Preedingeah time n + 1 2 N you may bet any fration Fn you like of your (urrent) fortuneMnon the upoming Bernoulli event Xn+1, at odds (p : 1�p); your new fortune after thatbet will beMn+1 =Mn(1�Fn) if you lose (i.e., ifXn+1 = 0), andMn+1 = Mn(1+Fn 1�pp )if you win (i.e., if Xn+1 = 1), or in general Mn+1 = Mn(1 � Fn(1 � Xn+1=p)). IfPage 14Page 14Page 14



STA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertFn 2 �fX1 � � �Xng, then E[Mn+1 j Fn℄ = Mn and Mn is a martingale| hene there isno possible betting strategy Fn based only on observed information Fn that an leadto a positive expeted pro�t sine E[Mn �M0℄ � 0. We an represent Mn in the formMn =M0 + n�1Xi=0 FiMi[Yi+1 � Yi℄as the \martingale transform" of the martingale Yn := (Sn � np)=p.3. Variane of a Sum: Mn = �Pni=1 Yi�2 � n�2, where EYiYj = �2Æij4. Radon-Nikodym Derivatives:Mn(!) = 2�n Z (i+1)=2ni=2n f(x) dx; i = b2n!!M1(!) = f(!) a.s5. Leftovers:� Submartingales: E[X+t ℄ <1, Xt 2 Ft, Xt � E[Xs j Ft℄ for s > t.� Supermartingales: IfXt is a submartingale then Yt := (�Xt) is a supermartingale,satisfying Yt � E[Ys j Ft℄ for s > t.� Jensen's inequality: if Mt is a martingale and if � onvex with E[�(Mt)+℄ < 1,then Xt = �(Mt) is a submartingale.� Most of the bounds and onvergene theorems above extend to sub- or super-martingales.� Positive supermartingales always onverge: if Yt � 0 is a supermartingale, then(9Y1 2 L1) Yt ! Y a.s: If fYtg is UI, also Yt ! Y in L1.ReferenesNeyman, J. and Pearson, E. (1933), \On the Problem of the Most EÆient Tests of StatistialHypotheses," Philosophial Transations of the Royal Soiety. Series A, 231, 289{337.Resnik, S. I. (1998), A Probability Path, Boston, MA: Birkh�auser.Wald, A. (1945), \Sequential tests of statistial hypotheses," Annals of Mathematial Statis-tis, 16, 117{186.Wald, A. and Wolfowitz, J. (1948), \Optimal Charater of the Sequential Probability RatioTest," Annals of Mathematial Statistis, 19, 326{339. Last edited: November 20, 2014Page 15Page 15Page 15


