
STA 711: Probability & Measure TheoryRobert L. Wolpert11 Martingale Methods: De�nitions & ExamplesKarlin & Taylor, A First Course in Sto
hasti
 Pro
esses, pp. 238{253MartingalesWe've already en
ountered and used martingales in this 
ourse to help study the hitting-timesof Markov pro
esses. Informally a martingale is simply a sto
hasti
 pro
ess Mt de�ned on someprobability spa
e (
;F ;P) that is \
onditionally 
onstant," i.e., whose predi
ted value at anyfuture time s > t is the same as its present value at the time t of predi
tion. Formally we representwhat is known at time t in the form of an in
reasing family of �-algebras Ft � F , possibly thosegenerated by a pro
ess [Xs : s � t℄ or even by the martingale itself, Ft = �([Ms : s � t℄), andrequire that E[jMtj℄ <1 for ea
h t (so the 
onditional expe
tation below is well-de�ned) and thatMt = E[Ms j Ft℄for ea
h t < s. For dis
rete-time pro
esses (like fun
tions of the Markov 
hains we looked at before)it is only ne
essary to take s = t+ 1, and we usually take Ft = �[Xi : i � t℄ and writeMt = E[Mt+1 j X0; :::;Xt℄:Several \big theorems" about martingales make them useful for studying sto
hasti
 pro
esses:Optional Sampling Theorem:If � is a stopping time or Markov time, i.e., a random time that \doesn't depend on the future"(te
hni
ally the requirement is that the event [� � t℄ should be in Ft for ea
h t), and if Mt is amartingale, and if both E[� ℄ <1 and fMtg is uniformly integrable, thenMt = E[M�_tjFt℄and in parti
ular x = E[M� jM0 = x℄. More generally, if f�ng is an in
reasing sequen
e of stoppingtimes with E[�n℄ <1 or fMtg uniformly integrable, then Yn =M�n is a martingale.
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STA 711 Week 11 R L WolpertSTA 711 Week 11 R L WolpertSTA 711 Week 11 R L WolpertMaximal Inequalities:If Mt is a martingale and if t � 1 thenPh sups�t Ms � �i � 1�E�M+t �Phmins�t Ms � ��i � 1��E�M+t �� E�M0��Eh sups�t jMsjpi � � pp� 1�p sups�t E�jMsjp� (p > 1)Eh sups�t jMsji � ee� 1 sups�t E�jMsj log+(jMsj)�(p = 1)Martingale Path Regularity:If Mt is a martingale and a < b denote by �(t)[a;b℄ the number of \up
rossings" of the interval [a; b℄by Ms prior to time t, the number of times it passes from below a to above b; thenEh�(t)[a;b℄i � E[M+t ℄ + jajb� aand, in parti
ular, martingale paths don't os
illate in�nitely often| thus they have left and rightlimits at every point. This is also the key lemma to prove:Martingale Convergen
e Theorems:Let Mt be a martingale. Then:For any martingale Mt, there exists an RV M�1 su
h thatlimt!�1Mt =M�1 a.s. (Ba
kwards MCT)If also sups<1 E[M+s ℄ <1, then there exists an RV M1 su
h thatlimt!1Mt =M1 a.s. (Forwards MCT)If also fjMsjpg is uniformly integrable, then M1 2 Lp andlimt!1Mt =M1 in Lp. (Lp)Martingale Problem for Continuous-Time Markhov Chains:Let Qtjk be a (possibly time-dependent) Markov transition matrix on a state spa
e S. Then anS-valued pro
ess Xt is a Markov 
hain with transition matrix Qtjk if and only if, for all fun
tions� : S ! R, the pro
ess Page 2Page 2Page 2



STA 711 Week 11 R L WolpertSTA 711 Week 11 R L WolpertSTA 711 Week 11 R L WolpertM�(t) � �(Xt)� �(X0)� Z t0 h Xi=Xsj2S Qsij [�(j) � �(i)℄i dsis a martingale. Similar 
hara
terizations apply to dis
rete-time Markov 
hains and to 
ontinuous-time Markov pro
esses with non-dis
rete state spa
e S. This is the most powerful and general wayknown for 
onstru
ting Markov pro
esses.Doob's Martingale:Let Y be any F -measurable L1 random variable and let Mt = E[Y j Ft℄ be the best predi
tion ofY available at time t. Then Mt is a uniformly-integrable martingale.To summarize, martingales are important be
ause:1. They have 
lose 
onne
tions with Markov pro
esses;2. Their expe
tations at stopping times are easy to 
ompute;3. They o�er a tool for bounding the maxima and minima of pro
esses;4. They o�er a tool for establishing path regularity of pro
esses;5. They o�er a tool for establishing the a.s. 
onvergen
e of 
ertain random sequen
es;6. They are important for modeling e
onomi
 and statisti
al time series whi
h are, in somesense, predi
tions.Examples:1. Partial sums: Sn = �ni=1Xi of independent 
entered RVs2. Sto
hasti
 Integral: Let Xn be an IID Bernoulli sequen
e with probability p. At time n you
an bet any fra
tion Fn you like of your (previous) fortune Mn�1 at odds p : 1�p, so yournew fortune is Mn�1(1 � Fn(1 � Xn=p)). If Fn 2 �[X1 � � �Xn�1℄, Mn is a martingale. Notethat Mn =M0 + nXi=1 FiMi�1[Yn � Yn�1℄for the martingale Yn = (Sn � np)=p, where Sn �Pnj=1Xj .3. Varian
e of a Sum: Mn = �Pni=1 Yi�2 � n�2, where EYi = 0 and EYiYj = �2Æij4. Radon-Nikodym Derivatives: Mn(!) = E�f(!) j �f( i2n ; j2n ℄g�Submartingales: Xt 2 Ft, E[X+t ℄ <1, Xt � E[Xs j Ft℄.Jensen's inequality: if Xt a margingale, � 
onvex and E[�(Xt)+℄ <1, then �(Xt) is a submartin-gale. Page 3Page 3Page 3


