STA 711: Probability and Measure Theory

Analysis & Calculus Quiz

Students in STA 711: Probability & Measure Theory are expected to be familiar with real analysis at an advanced undergraduate level— the level of W. Rudin's *Principles of Mathematical Analysis* or M. Reed's *Fundamental Ideas of Analysis*. They should be able to answer the questions in this quiz without consulting reference materials.

Problem 1: Recall that a sequence $\{x_n\}$ in a metric space (\mathcal{X}, d) converges to a limit $x^* \in \mathcal{X}$ if for each $\epsilon > 0$ there exists a number $N_{\epsilon} < \infty$ such that

$$(\forall n \ge N_{\epsilon}) \quad \mathrm{d}(x_n, x^*) < \epsilon.$$

a. Prove¹ that $x_n := 1/\sqrt{n}$ converges to $x^* = 0$ in the metric space $\mathcal{X} = \mathbb{R}$ with the usual (Euclidean) distance metric $d(x, y) := |x - y| = \sqrt{(x - y)^2}$.

b. Find an explicit sequence x_n of rational numbers that converges to $x^* = \pi$ in the metric space $\mathcal{X} = \mathbb{R}$. Prove that it converges, by finding N_{ϵ} (Hint: you might want to *start* by choosing N_{ϵ} — say, $\lceil 1/\epsilon \rceil$ or $\lceil -\log_2 \epsilon \rceil$ or $\lceil -\log_{10} \epsilon \rceil$ — and then find x_n).

¹Find N_{ϵ} explicitly. You may find the function $\lfloor x \rfloor := \max\{k \in \mathbb{Z} : k \leq x\}$ (the greatest integer less than or equal to x) to be useful, or perhaps $\lceil x \rceil := \min\{k \in \mathbb{Z} : k \geq x\}$.

Problem 2: Recall that a subset *E* of a metric space (\mathcal{X}, d) is *open* if for each $x \in E$ there exists some $\epsilon_x > 0$ such that the entire ball

$$B_{\epsilon}(x) = \{\xi \in \mathcal{X} : d(x,\xi) < \epsilon_x\} \subset E$$

and that a set $F \subset \mathcal{X}$ is *closed* if its complement $F^c = \{x \in \mathcal{X} : x \notin F\}$ is open.

a. Prove that (0,1) is open in $\mathcal{X} = \mathbb{R}$.

b. Prove that any union $U = \bigcup E_{\alpha}$ of open sets is also open.

c. Show by example that the union $U = \bigcup F_{\alpha}$ of closed sets may not be closed.

Problem 3: Recall that a set K in a metric space (\mathcal{X}, d) is $compact^2$ if every open cover $K \subset \bigcup_{\alpha} U_{\alpha}$ admits a finite sub-cover $K \subset \bigcup_{i=1}^{n} U_{\alpha_i}$, and that a function $f(\cdot) : \mathcal{X} \to \mathcal{Y}$ from one metric space to another is *continuous* if for every open set $U \subset \mathcal{Y}$, $f^{-1}(U) := \{x : f(x) \in U\}$ is an open set in \mathcal{X} .

a. If K is a *compact* set and $A \subset K$ is a *closed* subset, prove that A is also compact.

b. If $f : \mathcal{X} \to \mathbb{R}$ is a *continuous* real-valued function and $K \subset \mathcal{X}$ is compact, prove that the supremum

$$M := \sup_{x \in K} f(x)$$

is finite.

c. Show³ this can fail if f is not continuous—*i.e.*, give an example of an unbounded (but finite) function f on a compact set K.

²The Heine-Borel theorem says in Euclidean space any closed & bounded set is compact, but that doesn't hold in general. For example, the unit ball $\{f : \int_0^1 |f(x)|^2 dx \leq 1\}$ is closed and bounded in $L_2((0,1])$ but is not compact.

³Suggestion: take K = [0, 1] on $\mathcal{X} = \mathbb{R}$, and define f(x) by cases. What cases?

Problem 4:

a. Let K_{α} be compact for each index α and suppose that each *finite* intersection $\bigcap_{j=1}^{n} K_{\alpha_j} \neq \emptyset$ is non-empty. Prove that $\bigcap_{\alpha} K_{\alpha} \neq \emptyset$.

b. If $f : \mathcal{X} \to \mathbb{R}$ is real-valued and continuous with supremum $M := \sup_{x \in K} f(x)$ on a compact set $K \subset \mathcal{X}$, prove that there exists some $x^* \in K$ for which $f(x^*) = M$.

Problem 5:

a. Give an example of a closed set $C \subset \mathbb{R}$ that is *not* compact.

b. Give an example of a set $A \subset \mathbb{R}$ that is neither closed nor open.

c. Give an example of a set $B \subset \mathbb{R}$ that is both closed and open.

Problem 6: Evaluate the sums and integrals below for *every* value of $p \in \mathbb{R}$ (some expressions might be infinite or undefined for some values of p):

a.
$$\int_{0}^{1} x^{p} dx =$$

b.
$$\int_{0}^{\infty} e^{-px} dx =$$

c.
$$\sum_{n=2}^{9} p^{n} =$$

d.
$$\sum_{n=1}^{\infty} p^{n} =$$

e.
$$\sum_{n=7}^{\infty} n p^{n} =$$

f.
$$\int_{0}^{\infty} x e^{-px^{2}} dx =$$

g.
$$\int_{0}^{x} \sin(\ln u) du =$$

h.
$$\int_{0}^{\pi} e^{-p\cos(x)} \sin(x) dx =$$

Problem 7: Which of the following sums and integrals converges (to a finite limit)? Why? You need not evaluate the limit.

a. T F
$$\int_2^\infty \frac{\ln(e^x - 2)}{x^3 + 1} dx$$
 converges:

b. T F
$$\sum_{n=0}^{\infty} \frac{3^n (n!)^2}{(2n)!}$$
 converges:

c. T F
$$\sum_{n=1}^{\infty} \frac{\ln n + \sin n}{n^{3/2}}$$
 converges:

d. T F
$$\int_0^\infty \frac{\sin x}{x^{3/2}} dx$$
 converges:

e. T F
$$\int_0^\infty \frac{dx}{\sqrt{x}+x^2}$$
 converges:

f. T F
$$\int_0^1 \frac{\tan x}{x^2} dx$$
 converges:

Last edited: October 19, 2015