Midterm Examination II

STA 711: Probability \& Measure Theory

Thursday, 2012 Nov 15, 11:45 am - 1:00pm

This is a closed-book exam. You may use a single sheet of prepared notes, if you wish, but you may not share materials. If a question seems ambiguous or confusing, please ask me to clarify it.

Unless a problem states otherwise, you must show your work. There are blank worksheets at the end of the test for this. It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find. For full credit, give answers in closed form (no unevaluated sums, integrals, maxima, etc.) where possible and simplify.
Good luck!

1.	$/ 20$
2.	$/ 20$
3.	$/ 20$
4.	$/ 20$
5.	$/ 20$
Total:	$/ 100$

\qquad

Problem 1: \quad Let $\Omega=\mathbb{R}_{+}$with Borel sets $\mathcal{F}=\mathcal{B}\left(\mathbb{R}_{+}\right)$and probability measure

$$
\mathrm{P}[A]:=\int_{A} e^{-\omega} d \omega
$$

for $A \in \mathcal{F}$. For $n \in \mathbb{Z}_{+}:=\{0,1,2, \ldots\}$ set $X_{n}(\omega):=\omega^{n}$.
a) (6) Find (explicitly, in closed form- simplify) the bound that a direct application of Markov's inequality ${ }^{1}$ gives for
$\mathrm{P}\left[X_{3} \geq 8\right] \leq$
b) (6) Find (in closed form- simplify) the exact probability $\mathrm{P}\left[X_{3} \geq 8\right]=$
c) (8) Set $Z:=\sum_{0 \leq n<\infty} X_{n} / n$!. Evaluate $Z(\omega)$ explicitly and find $\mathrm{E}\left[Z^{p}\right]$ for each $p>0$:

$$
Z(\omega)=
$$

$$
\mathrm{E}\left[Z^{p}\right]=
$$

[^0]Problem 2: Let $\left\{X_{i}, Y_{i}: i \in \mathbb{N}\right\}$ be iid with the standard exponential $\mathrm{Ex}(1)$ distribution ${ }^{2}$. Set $Z_{i}:=\left(X_{i}-Y_{i}\right)$ and $S_{n}:=\sum_{1 \leq i \leq n} Z_{i}$.
a) (5) Find the characteristic function for $S_{n}:{ }^{3}$ $\phi_{n}(\omega):=\mathrm{E} e^{i \omega S_{n}}=$
b) (5) Find the mean and variance of S_{n} by any method you wish (but show your work or explain your answer):

$$
\mu_{n}:=\mathrm{E} S_{n}=
$$

[^1]
Problem 2 (cont'd) :

c) (5) Find the indicated limits for $\omega \in \mathbb{R}$ as $n \rightarrow \infty$:

$$
\phi_{n}(\omega / n) \rightarrow \ldots
$$

d) (5) Find the indicated limits for $\omega \in \mathbb{R}$ as $n \rightarrow \infty$:

$$
\phi_{n}(\omega / \sqrt{n}) \rightarrow
$$

\qquad

$$
S_{n} / \sqrt{n} \Rightarrow
$$

\qquad

Problem 3: Let $\left\{X_{n}\right\}$ be independent real-valued random variables on a probability space $(\Omega, \mathcal{F}, \mathrm{P})$ for $n \in \mathbb{N}$, with a common continuous distribution. Call X_{n} a "record" if $X_{n}>\max \left\{X_{j}: 1 \leq j<n\right\}$ (X_{1} is always a record), and set:

$$
\zeta_{n}:= \begin{cases}1 & X_{n} \text { is a record } \\ 0 & X_{n} \text { is not a record. }\end{cases}
$$

a) (5) Find^{4}
$\mathrm{E}\left[\zeta_{n}\right]=\mathrm{P}\left[X_{n}\right.$ is a record $]=$ \qquad
b) (5) Are $\left\{\zeta_{2}, \zeta_{3}\right\}$ independent? \bigcirc Yes \bigcirc No Why? ${ }^{4}$

[^2]Name:

Problem 3 (cont'd) :

c) (5) Let $Z_{n}:=\sum_{j=1}^{n} \zeta_{j}$ be the number of records among the first n observations. Prove $Z_{n} / n \rightarrow 0$ in L_{1} (for 4 pts) and $a . s$ (for 1 pt).
d) (5) Which of the preceding answers in this Problem 3 would change if the common distribution of $\left\{X_{n}\right\}$ were not continuous? Give an example to illustrate. ${ }^{5}$ Circle the ones that would change: a) b) c) and explain:

[^3]Problem 4: Let X be a discrete-valued random variable with $\operatorname{pmf} p_{n}=$ $\mathrm{P}\left[X=a_{n}\right]$ for some $\left\{a_{n}\right\} \subset \mathbb{R},\left\{p_{n}\right\} \subset \mathbb{R}_{+}$s.t. $\sum_{n=1}^{\infty} p_{n}=1$ and let Y be an absolutely-continuous real valued random variable with pdf $g(y)$, independent of X.
a) (4) Exactly what does it mean for X and Y to be independent? Give either the definition or a sufficient criterion.
b) (4) Give an expression (it should involve $\left\{a_{n}\right\},\left\{p_{n}\right\}$, and g) for the indicated expectation, for a bounded measurable $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$: $\mathrm{E}[h(X, Y)]=$
c) (6) Is the sum $Z:=X+Y \bigcirc$ discrete, \bigcirc absolutely continuous, or ○can't tell?? If discrete, give the pmf $p(z)$; if absolutely continuous, give the pdf $f(z)$; if this can't be determined, explain.
d) (6) Give the exact conditions on $\left\{a_{n}\right\},\left\{p_{n}\right\}$, and g needed to ensure that $X \in L_{2}$ and $Y \in L_{2}$.

Problem 5: True or false? Circle one; each answer is 2 points. No explanations are needed, but you can give one if you think the question is ambiguous or tricky (no tricks are intended). All random variables are real.
a) T F Lebesgue's dominated convergence theorem implies that $\int_{0}^{1} \sin (n x) d x \rightarrow 0$ as $n \rightarrow \infty$.
b) T F Jensen's Inequality implies that $\mathrm{E}\left(X^{2}\right) \geq(\mathrm{E} X)^{2}$ for $X \in L_{1}$.
c) T F For any r.v. Y and number $a>0, \mathrm{P}[Y>a] \leq \mathrm{E}\left[Y^{2}\right] / a^{2}$.
d) T F For any sequence of random variables $\left\{X_{n}\right\} \subset L_{1}(\Omega, \mathcal{F}, \mathrm{P})$,

$$
\mathrm{E}\left[\sum_{n=1}^{\infty} X_{n}\right]=\sum_{n=1}^{\infty}\left[\mathrm{E} X_{n}\right]
$$

e) T F For any random variables $\left\{X_{\alpha}\right\},\left\{\cos \left(X_{\alpha}\right)\right\}$ is UI.
f) T F Let X have the geometric distribution with $\mathrm{P}[X=k]=2^{-k-1}$ for $k \in \mathbb{Z}_{+}=\{0,1,2, \ldots\}$. Then $\mathrm{P}[X$ is odd $] \geq 1 / 2$.
g) T F Three σ-fields $\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}$ are independent if and only if $\mathrm{P}\left[F_{i} \cap F_{j}\right]=\mathrm{P}\left[F_{i}\right] \mathrm{P}\left[F_{j}\right]$ for every $F_{i} \in \mathcal{F}_{i}$, for $i, j \in\{1,2,3\}$ with $i \neq j$.
h) T F Random variables X and Y are independent if and only if $\mathrm{E}[f(X) \cdot g(Y)]=\mathrm{E}[f(X)] \cdot \mathrm{E}[g(Y)]$ for all bounded Borel functions $f(x), g(y)$.
i) T F If $\left\{X_{n}\right\}$ is UI then for some constant $B>0$ each $\left\|X_{n}\right\|_{1} \leq B$.
j) T F If X_{n} is absolutely continuous with pdf $f_{n}(x)$ and if X_{n} converges in distribution, then the limiting distribution has a pdf $f(x)$ and $f_{n}(x) \rightarrow f(x)$ as $n \rightarrow \infty$ for every x where $f(x)$ is continuous.

Name:
STA 711: Prob \& Meas Theory

Blank Worksheet

Name:
STA 711: Prob \& Meas Theory

Another Blank Worksheet

Name	Notation	pdf/pmf	Range	Mean μ	Variance σ^{2}
Beta	$\operatorname{Be}(\alpha, \beta)$	$f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$	$x \in(0,1)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$
Binomial	$\mathrm{Bi}(n, p)$	$f(x)=\binom{n}{x} p^{x} q^{(n-x)}$	$x \in 0, \cdots, n$	$n p$	$n p q \quad(q=1-p)$
Exponential	$\mathrm{Ex}(\lambda)$	$f(x)=\lambda e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	$1 / \lambda$	$1 / \lambda^{2}$
Gamma	$\mathrm{Ga}(\alpha, \lambda)$	$f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	α / λ	α / λ^{2}
Geometric	$\mathrm{Ge}(p)$	$f(x)=p q^{x}$	$x \in \mathbb{Z}_{+}$	q / p	$q / p^{2} \quad(q=1-p)$
		$f(y)=p q^{y-1}$	$y \in\{1, \ldots\}$	$1 / p$	$q / p^{2} \quad(y=x+1)$
HyperGeo.	HG (n, A, B)	$f(x)=\frac{\binom{A}{x}\binom{B}{n}}{\binom{+B}{n}}$	$x \in 0, \cdots, n$	$n P$	$n P(1-P) \frac{N-n}{N-1} \quad\left(P=\frac{A}{A+B}\right)$
Logistic	Lo (μ, β)	$f(x)=\frac{e^{-(x-\mu) / \beta}}{\beta\left[1+e^{-(x-\mu) / \beta]^{2}}\right.}$	$x \in \mathbb{R}$	μ	$\pi^{2} \beta^{2} / 3$
Log Normal	$\mathrm{LN}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{x \sqrt{2 \pi \sigma^{2}}} e^{-(\log x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}_{+}$	$e^{\mu+\sigma^{2} / 2}$	$e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)$
Neg. Binom.	$\mathrm{NB}(\alpha, p)$	$f(x)=\binom{x+\alpha-1}{x} p^{\alpha} q^{x}$	$x \in \mathbb{Z}_{+}$	$\alpha q / p$	$\alpha q / p^{2} \quad(q=1-p)$
		$f(y)=\binom{y-1}{y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in\{\alpha, \ldots\}$	α / p	$\alpha q / p^{2} \quad(y=x+\alpha)$
Normal	No (μ, σ^{2})	$f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}$	μ	σ^{2}
Pareto	$\mathrm{Pa}(\alpha, \epsilon)$	$f(x)=\alpha \epsilon^{\alpha} / x^{\alpha+1}$	$x \in(\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha-1}$	$\frac{\epsilon^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)}$
Poisson	$\mathrm{Po}(\lambda)$	$f(x)=\frac{\lambda^{x}}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_{+}$	λ	λ
Snedecor F	$F\left(\nu_{1}, \nu_{2}\right)$	$\begin{aligned} & f(x)=\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)\left(\nu_{1} / \nu_{2}\right)^{\nu_{1} / 2}}{\Gamma\left(\frac{\nu_{2}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)} \times \\ & \quad x^{\frac{\nu_{1}-2}{2}}\left[1+\frac{\nu_{1}}{\nu_{2}} x\right]^{-\frac{\nu_{1}+\nu_{2}}{2}} \end{aligned}$	$x \in \mathbb{R}_{+}$	$\frac{\nu_{2}}{\nu_{2}-2}$	$\left(\frac{\nu_{2}}{\nu_{2}-2}\right)^{2} \frac{2\left(\nu_{1}+\nu_{2}-2\right)}{\nu_{1}\left(\nu_{2}-4\right)}$
Student t	$t(\nu)$	$f(x)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right) \sqrt{\pi \nu}}\left[1+x^{2} / \nu\right]^{-(\nu+1) / 2}$	$x \in \mathbb{R}$	0	$\nu /(\nu-2)$
Uniform	Un (a, b)	$f(x)=\frac{1}{b-a}$	$x \in(a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$
Weibull	We (α, β)	$f(x)=\alpha \beta x^{\alpha-1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_{+}$	$\frac{\Gamma\left(1+\alpha^{-1}\right)}{\beta^{1 / \alpha}}$	$\frac{\Gamma(1+2 / \alpha)-\Gamma^{2}(1+1 / \alpha)}{\beta^{2 / \alpha}}$

[^0]: ${ }^{1}$ You can compute $\mathrm{E} X_{n}$ explicitly, using the Gamma or factorial functions.

[^1]: ${ }^{2}$ A sheet of information about common distributions is at the back of this exam.
 ${ }^{3}$ Suggestion: First find the ch.f. for X_{1}; then for $-Y_{1}$; then for Z_{1}; then for S_{n}.

[^2]: ${ }^{4}$ For parts a) b) c) of this problem it is only the order of the $\left\{X_{n}\right\}$ that matter, not their specific values. What are the possible orders of, say, X_{1}, X_{2}, X_{3} ? What are their probabilities? Recall that they are iid with a continuous distribution. Symmetry helps.

[^3]: ${ }^{5}$ Suggestion: consider iid Bernoulli $\left\{X_{n}\right\}$ with $p=1 / 2$.

