Final Examination

STA 711: Probability \& Measure Theory
Tuesday, 2013 Dec 10, 9:00 am - 12:00n

This is a closed-book examination. You may use a sheet of prepared notes, if you wish, but you may not share materials. If a question seems ambiguous or confusing, please ask me to clarify it.

Unless a problem states otherwise, you must show your work. There are blank worksheets and a pdf/pmf sheet at the end of the test. It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find. Good luck.

1.	/20	5.	$/ 20$
2.	/20	6.	/20
3.	/20	7.	/20
4.	/20	8.	/20
	$/ 80$		180
Total:	/160		

Problem 1: Let $\left\{\mathcal{L}_{n}\right\}$ and $\left\{\mathcal{P}_{n}\right\}$ be nested sequences of λ-systems and π-systems ${ }^{1}$, respectively, on a probability space $(\Omega, \mathcal{F}, \mathrm{P})$, i.e., that satisfy $\mathcal{L}_{n} \subset \mathcal{L}_{n+1} \subset \mathcal{F}$ and $\mathcal{P}_{n} \subset \mathcal{P}_{n+1} \subset \mathcal{F}$ for each $n \in \mathbb{N}$. For each of parts a)-d), give a proof or a counter-example.
a) (5) Is $\cap \mathcal{L}_{n}$ a λ-system? \bigcirc Yes \bigcirc No Why?
b) (5) Is $\cup \mathcal{L}_{n}$ a λ-system? \bigcirc Yes \bigcirc No Why?

[^0]Name:

Problem 1 (cont'd): Still $\mathcal{L}_{n} \subset \mathcal{L}_{n+1} \subset \mathcal{F}$ are λ-systems and $\mathcal{P}_{n} \subset$ $\mathcal{P}_{n+1} \subset \mathcal{F}$ are π-systems on $(\Omega, \mathcal{F}, \mathrm{P})$.
c) (5) Is $\cap \mathcal{P}_{n}$ a π-system? \bigcirc Yes \bigcirc No Why?
d) (5) Is $\cup \mathcal{P}_{n}$ a π-system? \bigcirc Yes \bigcirc No Why?

Problem 2: Let $\Omega=(0,1]^{2}$ be the unit square, $\mathcal{F}=\mathcal{B}(\Omega)$ the Borel sets, and P Lebesgue measure. Consider several families of events: ${ }^{2}$

$$
\begin{array}{rll}
\mathcal{A}:=\{(0, a] \times(0, a]: 0<a \leq 1\} & \mathcal{B}:=\{(0, c] \times(c, 1]: 0<c \leq 1\} \\
\mathcal{C}:=\{(0, a] \times(0, b]: 0<a \leq b \leq 1\} & \mathcal{D}:=\{(0, a] \times(0, b]: 0<a, b \leq 1\}
\end{array}
$$

a) (4) Which (if any) of these is a π-system? Circle those that are:

$$
\begin{array}{llll}
\mathcal{A} & \mathcal{B} & \mathcal{C} & \mathcal{D}
\end{array}
$$

b) (4) Which (if any) of these generates \mathcal{F}, i.e., has $\sigma(\cdots)=\mathcal{F}$?

$$
\begin{array}{llll}
\mathcal{A} & \mathcal{B} & \mathcal{C} & \mathcal{D}
\end{array}
$$

c) (6) Prove both your assertions about \mathcal{A}.
d) (6) Prove both your assertions about \mathcal{C}. ${ }^{3}$

[^1]Problem 3: Let $\Omega=\mathbb{R}_{+}=[0, \infty)$ be the positive half-line, with Borel sets $\mathcal{F}=\mathcal{B}\left(\mathbb{R}_{+}\right)$and probability measure P given by $\mathrm{P}(d \omega)=2 e^{-2 \omega} d \omega$ or, equivalently,

$$
\mathrm{P}[(a, b]]=e^{-2 a}-e^{-2 b} \quad 0 \leq a \leq b<\infty
$$

For each integer $n \in \mathbb{N}=\{1,2, \cdots\}$ define a random variable on (Ω, \mathcal{F}) by

$$
X_{n}(\omega):=\omega^{n} .
$$

a) (4) Find the mean $m_{n}=\mathrm{E}\left[X_{n}\right]$ for each $n \in \mathbb{N}$ and the covariance $\Sigma_{m n}=\mathrm{E}\left[\left(X_{m}-m_{m}\right)\left(X_{n}-m_{n}\right)\right]$ for each $m, n \in \mathbb{N}$ (see footnote ${ }^{4}$):

$$
m_{n}=\quad \Sigma_{m n}=
$$

b) (4) Give the distribution $\mu_{n}(\cdot)$ of X_{n}, a probability measure on $(\mathbb{R}, \mathcal{B})$: $\mu_{n}(B)=$

[^2]Problem 3 (cont'd): As before, $\Omega=\mathbb{R}_{+}, \mathcal{F}=\mathcal{B}\left(\mathbb{R}_{+}\right), \mathrm{P}(d \omega)=2 e^{-2 \omega} d \omega$, and $X_{n}(\omega):=\omega^{n}$ for $n \in \mathbb{N}$
c) (4) Find the indicated conditional expectation. Explain your answer. $\mathrm{E}\left[X_{2} \mid X_{4}\right](\omega)=$ \qquad
d) (4) Does X_{n} converge to a limit $X \in L_{2}$? If so, find X; if not, why?Yes \bigcirc No
e) (4) For which (if any) $p>0$ does $Y_{n}=\sum_{j=0}^{n} X_{j} / j$! converge in L_{p} as $n \rightarrow \infty$ to a limit $Y \in L_{p}$? Why?

Problem 4: \quad Let $\left\{A_{n}\right\} \subset \mathcal{F}$ and $\left\{X_{n}\right\} \subset L_{1}(\Omega, \mathcal{F}, \mathrm{P})$ with $\left\|X_{n}\right\|_{1} \leq 1$ and $P\left(A_{n}\right) \rightarrow 0$.
a) (8) Does it follow that $\mathrm{E} X_{n} \mathbf{1}_{A_{n}} \rightarrow 0$? \bigcirc Yes \bigcirc No Prove it, or find a counter-example:
b) (8) Does it follow that $\mathrm{E} X_{1} \mathbf{1}_{A_{n}} \rightarrow 0$? \bigcirc Yes \bigcirc No Prove it, or find a counter-example:
c) (4) Would either of your answers to a) or b) change if we have $\left\{X_{n}\right\} \subset$ $L_{2}(\Omega, \mathcal{F}, \mathrm{P})$ with $\left\|X_{n}\right\|_{2} \leq 1$? Explain.

Problem 5: Let $\left\{A_{n}\right\}$ be events on some probability space $(\Omega, \mathcal{F}, \mathrm{P})$ with $\mathrm{P}\left(A_{n}\right)=2^{-n}$ and for $n \geq 0$ set

$$
X_{n}:=2^{n} \mathbf{1}_{A_{n}}
$$

a) (4) Show that $Y:=\sum_{n=0}^{\infty} X_{n}$ is finite almost-surely:
b) (4) For which $0<p \leq \infty$ is $X_{n} \in L_{p}$? Why?
c) (6) For which $0<p \leq \infty$ is $Y \in L_{p}$? Why?
d) (6) Is the collection $\left\{X_{n}\right\}$ Uniformly Integrable? \bigcirc Yes \bigcirc No Why?

Problem 6: Let $X \in L_{2}(\Omega, \mathcal{F}, \mathrm{P})$ have mean $\mathrm{E} X=0$ and variance $\sigma^{2}=$ $E X^{2}$.
a) (8) For all $a>0$ and $t \in \mathbb{R}$ prove the one-sided bound

$$
\mathrm{P}[X>a] \leq \frac{\sigma^{2}+t^{2}}{(a+t)^{2}}
$$

b) (8) Find the value of $t>0$ that minimizes this bound (Hint: logarithms make this easier). Simplify!
c) (4) Find the resulting bound on tail probabilities (Simplify!): $\mathrm{P}[X>a] \leq$

Problem 7: \quad The random variables X and Z are independent, with distributions

$$
X \sim \operatorname{No}(0,1) \quad \mathrm{P}[Z=+1]=1 / 2=\mathrm{P}[Z=-1]
$$

while $Y:=X Z$ is their product. Simplify all answers.
a) (6) What is the probability distribution of Y ?
b) (4) What is the covariance of X and Y ?
c) (5) Are X and Y independent? \bigcirc Yes \bigcirc No Why?
d) (5) Are Y and Z independent? \bigcirc Yes \bigcirc No Why?

Problem 8: Let $\left\{X_{n}\right\} \subset L_{2}(\Omega, \mathcal{F}, \mathrm{P})$ be independent and identically distributed with mean $\mu=\mathrm{E} X_{1}$ and variance $\sigma^{2}=\mathrm{E}\left(X_{1}-\mu\right)^{2}$, and let $\mathcal{F}_{n}=\sigma\left\{X_{j}: 1 \leq j \leq n\right\}$. Fix any $\epsilon>0$. Choose True or False below; no need to explain (unless you can't resist). Each is 2 pt .
a) T F For any $Y \in L_{1}(\Omega, \mathcal{F}, \mathrm{P}), M_{n}:=\mathrm{E}\left[Y \mid \mathcal{F}_{n}\right]$ is a martingale.
b) T F For Y and $M_{n}:=\mathrm{E}\left[Y \mid \mathcal{F}_{n}\right]$ as above, $\left|M_{n}\right| \leq|Y|$ a.s.
c) T F If Z is measurable over $\cap_{n \geq m} \mathcal{F}_{n}$ for each $m \in \mathbb{N}$, then Z is constant a.s.
d) T F Almost surely, $\left\{n: X_{n}>n \epsilon\right\}$ is a finite set.
e) T F $\int_{-\epsilon}^{\epsilon}|x|^{-1 / 2} d x$ is well-defined and finite.
f) T F If $\mathrm{E}[\exp (Z)]<\infty$ and $\mathrm{E}[\exp (-Z)]<\infty$, then $Z \in L_{2}$.
g) T F Any function of $\left\{X_{2 n}: n \in \mathbb{N}\right\}$ is independent of any function of $\left\{X_{2 n+1}: n \in \mathbb{N}\right\}$.
h) T F $\mathrm{E}\left[X_{1} \mid\left(X_{1}+X_{2}+X_{3}+X_{4}+X_{5}+X_{6}\right)=42\right]=7$
i) T F If $Y_{n}:=X_{n}^{2}$ then $\left\{Y_{n}\right\}$ are UI
j) T F Necessarily $\mathrm{P}\left[\limsup \left|X_{n}\right|=\infty\right]=1=\mathrm{P}\left[\liminf \left|X_{n}\right|=0\right]$

Name:
STA 711: Prob \& Meas Theory

Blank Worksheet

Name:
STA 711: Prob \& Meas Theory

Another Blank Worksheet

Name	Notation	pdf/pmf	Range	Mean μ	Variance σ^{2}
Beta	$\operatorname{Be}(\alpha, \beta)$	$f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$	$x \in(0,1)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$
Binomial	$\mathrm{Bi}(n, p)$	$f(x)=\binom{n}{x} p^{x} q^{(n-x)}$	$x \in 0, \cdots, n$	$n p$	$n p q \quad(q=1-p)$
Exponential	$\mathrm{Ex}(\lambda)$	$f(x)=\lambda e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	$1 / \lambda$	$1 / \lambda^{2}$
Gamma	$\mathrm{Ga}(\alpha, \lambda)$	$f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	α / λ	α / λ^{2}
Geometric	$\mathrm{Ge}(p)$	$f(x)=p q^{x}$	$x \in \mathbb{Z}_{+}$	q / p	$q / p^{2} \quad(q=1-p)$
		$f(y)=p q^{y-1}$	$y \in\{1, \ldots\}$	$1 / p$	$q / p^{2} \quad(y=x+1)$
HyperGeo.	HG (n, A, B)	$f(x)=\frac{\binom{A}{x}\binom{B}{n}}{\binom{+B}{n}}$	$x \in 0, \cdots, n$	$n P$	$n P(1-P) \frac{N-n}{N-1} \quad\left(P=\frac{A}{A+B}\right)$
Logistic	Lo (μ, β)	$f(x)=\frac{e^{-(x-\mu) / \beta}}{\beta\left[1+e^{-(x-\mu) / \beta]^{2}}\right.}$	$x \in \mathbb{R}$	μ	$\pi^{2} \beta^{2} / 3$
Log Normal	$\mathrm{LN}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{x \sqrt{2 \pi \sigma^{2}}} e^{-(\log x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}_{+}$	$e^{\mu+\sigma^{2} / 2}$	$e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)$
Neg. Binom.	$\mathrm{NB}(\alpha, p)$	$f(x)=\binom{x+\alpha-1}{x} p^{\alpha} q^{x}$	$x \in \mathbb{Z}_{+}$	$\alpha q / p$	$\alpha q / p^{2} \quad(q=1-p)$
		$f(y)=\binom{y-1}{y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in\{\alpha, \ldots\}$	α / p	$\alpha q / p^{2} \quad(y=x+\alpha)$
Normal	No (μ, σ^{2})	$f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}$	μ	σ^{2}
Pareto	$\mathrm{Pa}(\alpha, \epsilon)$	$f(x)=\alpha \epsilon^{\alpha} / x^{\alpha+1}$	$x \in(\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha-1}$	$\frac{\epsilon^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)}$
Poisson	$\mathrm{Po}(\lambda)$	$f(x)=\frac{\lambda^{x}}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_{+}$	λ	λ
Snedecor F	$F\left(\nu_{1}, \nu_{2}\right)$	$\begin{aligned} & f(x)=\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)\left(\nu_{1} / \nu_{2}\right)^{\nu_{1} / 2}}{\Gamma\left(\frac{\nu_{2}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)} \times \\ & \quad x^{\frac{\nu_{1}-2}{2}}\left[1+\frac{\nu_{1}}{\nu_{2}} x\right]^{-\frac{\nu_{1}+\nu_{2}}{2}} \end{aligned}$	$x \in \mathbb{R}_{+}$	$\frac{\nu_{2}}{\nu_{2}-2}$	$\left(\frac{\nu_{2}}{\nu_{2}-2}\right)^{2} \frac{2\left(\nu_{1}+\nu_{2}-2\right)}{\nu_{1}\left(\nu_{2}-4\right)}$
Student t	$t(\nu)$	$f(x)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right) \sqrt{\pi \nu}}\left[1+x^{2} / \nu\right]^{-(\nu+1) / 2}$	$x \in \mathbb{R}$	0	$\nu /(\nu-2)$
Uniform	Un (a, b)	$f(x)=\frac{1}{b-a}$	$x \in(a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$
Weibull	We (α, β)	$f(x)=\alpha \beta x^{\alpha-1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_{+}$	$\frac{\Gamma\left(1+\alpha^{-1}\right)}{\beta^{1 / \alpha}}$	$\frac{\Gamma(1+2 / \alpha)-\Gamma^{2}(1+1 / \alpha)}{\beta^{2 / \alpha}}$

[^0]: ${ }^{1}$ Recall: \mathcal{L} is a λ-system if (a) $\Omega \in \mathcal{L}$, (b) $A \in \mathcal{L} \Rightarrow A^{c} \in \mathcal{L}$, and (c) $\left\{A_{n}\right\} \subset \mathcal{L}$ disjoint $\Rightarrow \cup A_{n} \in \mathcal{L} . \mathcal{P}$ is a π-system if $A, B \in \mathcal{P} \Rightarrow A \cap B \in \mathcal{P}$.

[^1]: ${ }^{2}$ Drawing pictures helps.
 ${ }^{3}$ I wouldn't suggest spending lots of time on the "b)" section of this part until the rest of the exam was mostly done.

[^2]: ${ }^{4} \operatorname{Recall} \Gamma(\alpha):=\int_{0}^{\infty} z^{\alpha-1} e^{-z} d z$ for $\alpha>0$, or $(\alpha-1)!$ for $\alpha \in \mathbb{N}$

