Midterm Examination II

STA 711: Probability & Measure Theory Wednesday, 2015 Nov 11, 1:25 – 2:40pm

This is a closed-book exam. You may use a single sheet of prepared notes, if you wish, but you may not share materials.

If a question seems ambiguous or confusing, *please* ask me to clarify it. Unless a problem states otherwise, you must **show** your **work**. There are blank worksheets at the end of the test if you need more room for this, and also a pdf/pmf sheet.

It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find.

For full credit, answers must be given in **closed form** with no unevaluated sums, integrals, maxima, unreduced fractions. Wherever, possible **simplify**.

Good luck!

Print Name	Clearly:	

1.	/20
2.	/20
3.	/20
4.	/20
5.	/20
Total:	/100

Problem 1: Let $\Omega := \mathbb{N} = \{1, 2, \ldots\}$ be the natural numbers. The sum $\zeta(p) := \sum_{n=1}^{\infty} \frac{1}{n^p}$ is infinite for $p \leq 1$ but finite for all p > 1. For p = 4 it is $\zeta(4) = \sum_{n=1}^{\infty} (1/n^4) = \pi^4/90$, so the set-function

$$P[A] := \frac{90}{\pi^4} \sum_{n \in A} \frac{1}{n^4}$$

is a probability measure on the power set $\mathcal{F}=2^{\Omega}$ of all subsets of Ω . Define a random variable on $(\Omega, \mathcal{F}, \mathsf{P})$ by $X(\omega) \equiv \omega$.

- a) (5) For p > 0, is $X \in L_p(\Omega, \mathcal{F}, \mathsf{P})$? If this depends on p, tell which L_p spaces contain X. Choose one and give your reasoning:
- $\bigcirc X \in L_p$ for no $0 <math>\bigcirc X \in L_p$ for ____< p <____
- b) (5) Define a sequence of sequence of truncated approximations to X by $X_n(\omega) \equiv \min(n, \omega)$. Are they in L_p ? Why?
- $\bigcirc X_n \in L_p \text{ for no } 0$
 - c) (5) Does $X_n \to X$ almost-surely? \bigcirc Yes \bigcirc No Explain:
 - d) (5) Does $X_n \to X$ in L_1 ? Pick one: \bigcirc Yes \bigcirc No Explain:

Problem 2: Let $\{U_n\}_{n\in\mathbb{N}} \stackrel{\text{iid}}{\sim} \mathsf{Un}(0,1]$ be independent uniformly-distributed random variables on the unit interval.

a) (5) What is the probability that at least one of the events

$$A_n := \{\omega : U_n(\omega) < \frac{1}{n+1}\}$$

occurs? ____ Why?

b) (5) What is the probability that all of the events

$$B_n := \{ \omega : U_n(\omega) \le \exp\left(-2^{-n}\right) \}$$

occur? Why?

c) (5) What is the probability that infinitely-many of the events

$$C_n := \{\omega : U_1(\omega) < U_2(\omega) < \dots < U_n(\omega)\}$$

occur? Why?

d) (5) Does the sequence of random variables $X_n := (\max_{1 \le i \le n} U_i)^n$ converge to zero in probability? \bigcirc Yes \bigcirc No Why?

Problem 3: For two sequences of real numbers $\{a_n\} \subset \mathbb{R}$, $\{b_n\} \subset (0,1]$ and a sequence $\{U_n\} \stackrel{\text{iid}}{\sim} \mathsf{Un}(0,1]$ of independent uniform random on (0,1], define random variables by

$$X_n := a_n \mathbf{1}_{(0,b_n]}(U_n) = \begin{cases} a_n & 0 < U_n \le b_n \\ 0 & b_n < U_n \le 1 \end{cases}$$

The random variables $\{X_n\}$ converge to zero in L_1 if and only if the sequences $\{a_n\}$ and $\{b_n\}$ satisfy the condition $|a_n|b_n \to 0$.

a) (5) What condition must $\{a_n\}$ and $\{b_n\}$ satisfy for $X_n \to 0$ in L_2 ?

b) (5) What condition must $\{a_n\}$ and $\{b_n\}$ satisfy for $X_n \to 0$ in L_∞ ?

c) (5) What condition must $\{a_n\}$ and $\{b_n\}$ satisfy for $X_n \to 0$ pr.?

d) (5) What condition must $\{a_n\}$ and $\{b_n\}$ satisfy for $X_n \to 0$ a.s.?

Problem 4: Let $\{U_n\} \stackrel{\text{iid}}{\sim} \mathsf{Un}(0,1)$ and set

$$X_n := -\log U_n$$
 $S_n := \sum_{k=1}^n X_k$ $Y_n := (1 - U_n)/U_n$ $T_n := \sum_{k=1}^n Y_k$

a) (4) For t > 0, find:

$$\mathsf{P}[X_n > t] = \underline{\hspace{1cm}} \mathsf{P}[Y_n > t] = \underline{\hspace{1cm}}$$

b) (4) Find the indicated moments (Page 8 may let you avoid integration):

- c) (4) In what way and to what limit does S_n/n converge as $n \to \infty$? Why?
- d) (4) In what way and to what limit does T_n/n converge as $n \to \infty$? Why?
- e) (4) In what way and to what limit does $(S_n n)/\sqrt{n}$ converge as $n \to \infty$? Why?

Problem 5: True or false? Circle one; each answer is worth 2 points. No explanations are needed, but you can give one if you think a question seems ambiguous or tricky.

- a) TF If $X_n \to X$ pr. then $Ee^{itX_n} \to Ee^{itX}$ for all $t \in \mathbb{R}$.
- b) TF For any $Y \in L_2$ and any a > 0, $P[Y > a] \le ||Y||_2^2/a^2$.
- c) TF For any $Y \in L_2$, $(\mathsf{E}|Y|)^4 \le (\mathsf{E}Y^2)^2 \le \mathsf{E}Y^4$.
- d) TF Two random variables X and Y are independent if and only if $\mathsf{E}[f(X \cdot Y)] = \mathsf{E}[f(X)] \, \mathsf{E}[f(Y)]$ for each bounded Borel function f(x) on \mathbb{R} .
- e) T F Two σ -algebras $\mathcal{G}, \mathcal{H} \subset \mathcal{F}$ are independent if and only if $\mathsf{E}[XY] = \mathsf{E}X \cdot \mathsf{E}Y$ for all random variables $X \in L_{\infty}(\Omega, \mathcal{G}, \mathsf{P}), Y \in L_{\infty}(\Omega, \mathcal{H}, \mathsf{P})$.
 - f) TF If $P[|X_n X| > \epsilon] \to 0$ for each $\epsilon > 0$, then $E|X_n X| \to 0$.
 - g) TF If $E|X_n X|^2 \to 0$, then $P[|X_n X| > \epsilon] \to 0$ for each $\epsilon > 0$.
 - h) TF If $E|X_n X|^2 \to 0$, then $E|X_n X| \to 0$.
- i) TF If $\{X_i\} \stackrel{\text{iid}}{\sim} \mathsf{Ex}(1)$ are independent with the standard exponential distribution and $S_n := \sum_{i=1}^n X_i$, then $(S_n n)/n$ converges to one a.s. as $n \to \infty$.
- j) T F If $\{X_i\} \stackrel{\text{iid}}{\sim} \mathsf{Ex}(1)$ and $S_n := \sum_{i=1}^n X_i$, then $(S_n n)/\sqrt{n}$ has approximately a $\mathsf{No}(0,1)$ distribution for large n.

Name:	STA 711	: Prob &	z Meas	Theory
-------	---------	----------	--------	--------

Blank Worksheet

Another Blank Worksheet

Name	Notation	$\mathrm{pdf}/\mathrm{pmf}$	Range	Mean μ	Variance σ^2	
Beta	$Be(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	$x \in (0,1)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Binomial	Bi(n,p)	$f(x) = \binom{n}{x} p^x q^{(n-x)}$	$x \in 0, \cdots, n$	np	npq	(q=1-p)
Exponential	$Ex(\lambda)$	$f(x) = \lambda e^{-\lambda x}$	$x \in \mathbb{R}_+$	$1/\lambda$	$1/\lambda^2$	
Gamma	$Ga(\alpha,\lambda)$	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$	$x \in \mathbb{R}_+$	α/λ	$lpha/\lambda^2$	
${\bf Geometric}$	Ge(p)	$f(x) = p q^x$	$x \in \mathbb{Z}_+$	q/p	q/p^2	(q=1-p)
		$f(y) = p q^{y-1}$	$y \in \{1, \ldots\}$	1/p	q/p^2	(y = x + 1)
HyperGeo.	HG(n,A,B)	$f(x) = \frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	nP	$n P (1-P) \frac{N-n}{N-1}$	$(P = \frac{A}{A+B})$
Logistic	$Lo(\mu,\beta)$	$f(x) = \frac{e^{-(x-\mu)/\beta}}{\beta[1+e^{-(x-\mu)/\beta}]^2}$	$x \in \mathbb{R}$	μ	$\pi^2 \beta^2/3$	
Log Normal	$LN(\mu,\sigma^2)$	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}}e^{-(\log x - \mu)^2/2\sigma^2}$	$x \in \mathbb{R}_+$	$e^{\mu + \sigma^2/2}$	$e^{2\mu+\sigma^2} \left(e^{\sigma^2} - 1 \right)$	
Neg. Binom.	$NB(\alpha,p)$	$f(x) = \binom{x+\alpha-1}{x} p^{\alpha} q^x$	$x \in \mathbb{Z}_+$	$\alpha q/p$	$\alpha q/p^2$	(q=1-p)
		$f(y) = {y-1 \choose y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in \{\alpha, \ldots\}$	lpha/p	$\alpha q/p^2$	$(y = x + \alpha)$
Normal	$No(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x-\mu)^2/2\sigma^2}$	$x \in \mathbb{R}$	μ	σ^2	
Pareto	$Pa(\alpha,\epsilon)$	$f(x) = (\alpha/\epsilon)(1 + x/\epsilon)^{-\alpha - 1}$	$x \in \mathbb{R}_+$	$\frac{\epsilon}{\alpha-1}$ *	$\frac{\epsilon^2\alpha}{(\alpha-1)^2(\alpha-2)}^*$	
		$f(y) = \alpha \epsilon^{\alpha} / y^{\alpha + 1}$	$y\in (\epsilon,\infty)$	$\frac{\epsilon \alpha}{\alpha - 1} *$	$\frac{\epsilon^2 \alpha}{(\alpha-1)^2(\alpha-2)}^*$	$(y = x + \epsilon)$
Poisson	$Po(\lambda)$	$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_+$	λ	λ	
${\bf Snedecor}\ F$	$F(\nu_1,\nu_2)$	$f(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})(\nu_1/\nu_2)^{\nu_1/2}}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \times$	$x \in \mathbb{R}_+$	$\frac{\nu_2}{\nu_2 - 2} *$	$\left(\frac{\nu_2}{\nu_2 - 2}\right)^2 \frac{2(\nu_1 + \nu_2)^2}{\nu_1(\nu_2)^2}$	$\frac{-\nu_2-2)}{(2-4)}^*$
		$x^{\frac{\nu_1-2}{2}} \left[1 + \frac{\nu_1}{\nu_2} x\right]^{-\frac{\nu_1+\nu_2}{2}}$				
Student t	t(u)	$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2}$	$x \in \mathbb{R}$	0*	$\nu/(\nu-2)^*$	
Uniform	Un(a,b)	$f(x) = \frac{1}{b-a}$	$x \in (a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
Weibull	We(lpha,eta)	$f(x) = \alpha \beta x^{\alpha - 1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_+$	$\frac{\Gamma(1+\alpha^{-1})}{\beta^{1/\alpha}}$	$\frac{\Gamma(1+2/\alpha)-\Gamma^2(1+1/\alpha)}{\beta^{2/\alpha}}$	
				•	·	